A000712
Generating function = Product_{m>=1} 1/(1 - x^m)^2; a(n) = number of partitions of n into parts of 2 kinds.
Original entry on oeis.org
1, 2, 5, 10, 20, 36, 65, 110, 185, 300, 481, 752, 1165, 1770, 2665, 3956, 5822, 8470, 12230, 17490, 24842, 35002, 49010, 68150, 94235, 129512, 177087, 240840, 326015, 439190, 589128, 786814, 1046705, 1386930, 1831065, 2408658, 3157789, 4126070, 5374390
Offset: 0
Assume there are integers of two kinds: k and k'; then a(3) = 10 since 3 has the following partitions into parts of two kinds: 111, 111', 11'1', 1'1'1', 12, 1'2, 12', 1'2', 3, and 3'. - _W. Edwin Clark_, Jun 24 2011
There are a(4)=20 partitions of 4 into 2 sorts of parts. Here p:s stands for "part p of sort s":
01: [ 1:0 1:0 1:0 1:0 ]
02: [ 1:0 1:0 1:0 1:1 ]
03: [ 1:0 1:0 1:1 1:1 ]
04: [ 1:0 1:1 1:1 1:1 ]
05: [ 1:1 1:1 1:1 1:1 ]
06: [ 2:0 1:0 1:0 ]
07: [ 2:0 1:0 1:1 ]
08: [ 2:0 1:1 1:1 ]
09: [ 2:0 2:0 ]
10: [ 2:0 2:1 ]
11: [ 2:1 1:0 1:0 ]
12: [ 2:1 1:0 1:1 ]
13: [ 2:1 1:1 1:1 ]
14: [ 2:1 2:1 ]
15: [ 3:0 1:0 ]
16: [ 3:0 1:1 ]
17: [ 3:1 1:0 ]
18: [ 3:1 1:1 ]
19: [ 4:0 ]
20: [ 4:1 ]
- _Joerg Arndt_, Apr 28 2013
The a(4)=20 ordered pairs (R,S) of partitions for n=4 are
([4], [])
([3, 1], [])
([2, 2], [])
([2, 1, 1], [])
([1, 1, 1, 1], [])
([3], [1])
([2, 1], [1])
([1, 1, 1], [1])
([2], [2])
([2], [1, 1])
([1, 1], [2])
([1, 1], [1, 1])
([1], [3])
([1], [2, 1])
([1], [1, 1, 1])
([], [4])
([], [3, 1])
([], [2, 2])
([], [2, 1, 1])
([], [1, 1, 1, 1])
This list was created with the Sage command
for P in PartitionTuples(2,4) : print P;
- _Joerg Arndt_, Apr 29 2013
G.f. = 1 + 2*x + 5*x^2 + 10*x^3 + 20*x^4 + 36*x^5 + 65*x^6 + 110*x^7 + 185*x^8 + ...
- H. Gupta et al., Tables of Partitions. Royal Society Mathematical Tables, Vol. 4, Cambridge Univ. Press, 1958, p. 90.
- J. Riordan, Combinatorial Identities, Wiley, 1968, p. 199.
- N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- R. P. Stanley, Enumerative Combinatorics, Cambridge, Vol. 1, 1999; see Proposition 2.5.2 on page 78.
- Seiichi Manyama, Table of n, a(n) for n = 0..10000 (first 501 terms from T. D. Noe)
- Arvind Ayyer, Amritanshu Prasad, and Steven Spallone, Macdonald trees and determinants of representations for finite Coxeter groups, arXiv:1812.00608 [math.RT], 2018.
- M. Baake, Structure and representations of the hyperoctahedral group, J. Math. Phys. 25 (1984) 3171, table 1.
- Roland Bacher and P. De La Harpe, Conjugacy growth series of some infinitely generated groups, hal-01285685v2, 2016.
- Jan Brandts and A Cihangir, Enumeration and investigation of acute 0/1-simplices modulo the action of the hyperoctahedral group, arXiv preprint arXiv:1512.03044 [math.CO], 2015.
- E. R. Canfield, C. D. Savage and H. S. Wilf, Regularly spaced subsums of integer partitions, arXiv:math/0308061 [math.CO], 2003.
- Alexandre Chaduteau, Nyan Raess, Henry Davenport, and Frank Schindler, Hilbert Space Fragmentation in the Chiral Luttinger Liquid, arXiv:2409.10359 [cond-mat.str-el], 2024. See pp. 8, 11.
- Alexandre Chaduteau, Nyan Raess, Henry Davenport, and Frank Schindler, Momentum-space modulated symmetries in the Luttinger liquid, Phys. Rev. B (2025) Vol. 111, Art. No. 165105. See p. 9.
- B. F. Chen, E. Ghorbani, and K. B. Wong, Cyclic decomposition of k-permutations and eigenvalues of the arrangement graphs, Electronic J. Combin. 20(4) (2013), #P22.
- W. Y. C. Chen, K. Q. Ji and H. S. Wilf, BG-ranks and 2-cores, arXiv:math/0605474 [math.CO], 2006.
- W. Edwin Clark, Mohamed Elhamdadi, Xiang-dong Hou, Masahico Saito and Timothy Yeatman, Connected Quandles Associated with Pointed Abelian Groups, arXiv preprint arXiv:1107.5777 [math.RA], 2011.
- W. Edwin Clark and Xiang-dong Hou, Galkin Quandles, Pointed Abelian Groups, and Sequence A000712 arXiv:1108.2215 [math.CO], Aug 10, 2011. [added by Jonathan Vos Post]
- Shouvik Datta, M. R. Gaberdiel, W. Li, and C. Peng, Twisted sectors from plane partitions, arXiv preprint arXiv:1606.07070 [hep-th], 2016. See Sect. 2.1.
- M. De Salvo, D. Fasino, D. Freni, and G. Lo Faro, Fully simple semihypergroups, transitive digraphs, and sequence A000712, Journal of Algebra, Volume 415, 1 October 2014, pp. 65-87.
- Mario De Salvo, Dario Fasino, Domenico Freni, and Giovanni Lo Faro, Semihypergroups Obtained by Merging of 0-semigroups with Groups, Filomat (2018) Vol. 32, No. 12, 4177-4194.
- Paul Hammond and Richard Lewis, Congruences in ordered pairs of partitions, Int. J. Math. Math. Sci. (2004), no.45--48, 2509--2512.
- Ruth Hoffmann, Özgür Akgün, and Christopher Jefferson, Composable Constraint Models for Permutation Enumeration, arXiv:2311.17581 [cs.DM], 2023.
- Saud Hussein, An Identity for the Partition Function Involving Parts of k Different Magnitudes, arXiv:1806.05416 [math.NT], 2018.
- INRIA Algorithms Project, Encyclopedia of Combinatorial Structures 129.
- Han Mao Kiah, Anshoo Tandon, and Mehul Motani, Generalized Sphere-Packing Bound for Subblock-Constrained Codes, arXiv:1901.00387 [cs.IT], 2019.
- Vaclav Kotesovec, A method of finding the asymptotics of q-series based on the convolution of generating functions, arXiv:1509.08708 [math.CO], Sep 30 2015, p. 8.
- Yen-chi R. Lin and Shu-Yen Pan, A recursive relation for bipartition numbers, arXiv:2406.14851 [math.CO], 2024.
- P. Nataf, M. Lajkó, A. Wietek, K. Penc, F. Mila, and A. M. Läuchli, Chiral spin liquids in triangular lattice SU (N) fermionic Mott insulators with artificial gauge fields, arXiv preprint arXiv:1601.00958 [cond-mat.quant-gas], 2016.
- Sylvain Prolhac, Spectrum of the totally asymmetric simple exclusion process on a periodic lattice--first excited states, arXiv preprint arXiv:1404.1315 [cond-mat.stat-mech], 2014.
- N. J. A. Sloane, Transforms.
- Jacob Sprittulla, On Colored Factorizations, arXiv:2008.09984 [math.CO], 2020.
- Index entries for expansions of Product_{k >= 1} (1-x^k)^m
-
a000712 = p a008619_list where
p _ 0 = 1
p ks'@(k:ks) m = if m < k then 0 else p ks' (m - k) + p ks m
-- Reinhard Zumkeller, Nov 06 2012
-
# DedekindEta is defined in A000594.
A000712List(len) = DedekindEta(len, -2)
A000712List(39) |> println # Peter Luschny, Mar 09 2018
-
with(combinat): A000712:= n-> add(numbpart(k)*numbpart(n-k), k=0..n): seq(A000712(n), n=0..40); # Emeric Deutsch
-
CoefficientList[ Series[ Product[1/(1 - x^n)^2, {n, 40}], {x, 0, 37}], x]; (* Robert G. Wilson v, Feb 03 2005 *)
Table[Count[Partitions[2*n], q_ /; Tr[(-1)^Mod[Flatten[Position[q, ?OddQ]], 2]] === 0], {n, 12}] (* _Wouter Meeussen, Apr 17 2013 *)
a[ n_] := SeriesCoefficient[ QPochhammer[ x]^-2, {x, 0, n}]; (* Michael Somos, Oct 12 2015 *)
Table[Length@IntegerPartitions[n, All, Range@n~Join~Range@n], {n, 0, 15}] (* Robert Price, Jun 15 2020 *)
-
{a(n) = my(A); if( n<0, 0, A = x * O(x^n); polcoeff( 1 / eta(x + A)^2, n))}; /* Michael Somos, Nov 14 2002 */
-
Vec(1/eta('x+O('x^66))^2) /* Joerg Arndt, Jun 25 2011 */
-
from sympy import npartitions
def A000712(n): return (sum(npartitions(k)*npartitions(n-k) for k in range(n+1>>1))<<1) + (0 if n&1 else npartitions(n>>1)**2) # Chai Wah Wu, Sep 25 2023
-
# uses[EulerTransform from A166861]
a = BinaryRecurrenceSequence(0, 1, 2, 2)
b = EulerTransform(a)
print([b(n) for n in range(40)]) # Peter Luschny, Nov 11 2020
More terms from Joe Keane (jgk(AT)jgk.org), Nov 17 2001
More terms from Michele Dondi (blazar(AT)lcm.mi.infn.it), Jun 15 2004
A266477
Triangle read by rows in which T(n,k) is the number of partitions of n with product of multiplicities of parts equal to k; n>=0, 1<=k<=A266480(n).
Original entry on oeis.org
1, 1, 1, 1, 2, 0, 1, 2, 2, 0, 1, 3, 2, 1, 0, 1, 4, 2, 2, 2, 0, 1, 5, 4, 2, 1, 1, 1, 1, 6, 6, 2, 3, 1, 2, 0, 2, 8, 7, 4, 4, 1, 2, 1, 0, 2, 1, 10, 8, 6, 6, 3, 2, 1, 3, 0, 1, 0, 2, 12, 13, 6, 6, 3, 7, 1, 2, 1, 1, 1, 1, 0, 1, 1, 15, 15, 9, 11, 3, 6, 2, 5, 3, 3, 0
Offset: 0
Row 4 is [2,2,0,1]. Indeed, the products of the multiplicities of the parts in the partitions [4], [1,3], [2,2], [1,1,2], [1,1,1,1] are 1, 1, 2, 2, 4, respectively.
Triangle T(n,k) begins:
00 : 1;
01 : 1;
02 : 1, 1;
03 : 2, 0, 1;
04 : 2, 2, 0, 1;
05 : 3, 2, 1, 0, 1;
06 : 4, 2, 2, 2, 0, 1;
07 : 5, 4, 2, 1, 1, 1, 1;
08 : 6, 6, 2, 3, 1, 2, 0, 2;
09 : 8, 7, 4, 4, 1, 2, 1, 0, 2, 1;
10 : 10, 8, 6, 6, 3, 2, 1, 3, 0, 1, 0, 2;
11 : 12, 13, 6, 6, 3, 7, 1, 2, 1, 1, 1, 1, 0, 1, 1;
12 : 15, 15, 9, 11, 3, 6, 2, 5, 3, 3, 0, 2, 0, 0, 0, 2, 0, 1;
-
b:= proc(n, i, p) option remember; `if`(n=0 or i=1,
x^max(p, p*n), add(b(n-i*j, i-1, max(p, p*j)), j=0..n/i))
end:
T:= n-> (p-> seq(coeff(p, x, i), i=1..degree(p)))(b(n$2, 1)):
seq(T(n), n=0..16);
-
Map[Table[Length@ Position[#, k], {k, Max@ #}] &, #] &@ Table[Map[Times @@ Map[Last, Tally@ #] &, IntegerPartitions@ n], {n, 12}] // Flatten (* Michael De Vlieger, Dec 31 2015 *)
b[n_, i_, p_] := b[n, i, p] = If[n == 0 || i == 1, x^Max[p, p*n], Sum[b[n - i*j, i - 1, Max[p, p*j]], {j, 0, n/i}]]; T[n_] := Function[p, Table[Coefficient[p, x, i], {i, 1, Exponent[p,x]}]][ b[n, n, 1]]; Table[T[n], {n, 0, 16}] // Flatten (* Jean-François Alcover, Aug 29 2016, after Alois P. Heinz *)
A258210
Expansion of f(-q) * f(-q^2) * chi(-q^3) in powers of q where chi(), f() are Ramanujan theta functions.
Original entry on oeis.org
1, -1, -2, 0, 1, 4, 0, 0, -2, -4, 2, 0, 0, -2, 0, 0, 1, 4, 4, 0, -4, 0, 0, 0, 0, -3, -4, 0, 0, 4, 0, 0, -2, 0, 2, 0, 4, -2, 0, 0, 2, 4, 0, 0, 0, -8, 0, 0, 0, -1, -6, 0, 2, 4, 0, 0, 0, 0, 2, 0, 0, -2, 0, 0, 1, 8, 0, 0, -4, 0, 0, 0, 4, -2, -4, 0, 0, 0, 0, 0, -4
Offset: 0
G.f. = 1 - q - 2*q^2 + q^4 + 4*q^5 - 2*q^8 - 4*q^9 + 2*q^10 - 2*q^13 + ...
- Seiichi Manyama, Table of n, a(n) for n = 0..10000 (terms 0..1000 from G. C. Greubel)
- Christian Kassel and Christophe Reutenauer, The zeta function of the Hilbert scheme of n points on a two-dimensional torus, arXiv:1505.07229v3 [math.AG], 2015 , see page 31 7.2(d). [Note that a later version of this paper has a different title and different contents, and the number-theoretical part of the paper was moved to the publication which is next in this list.]
- Christian Kassel and Christophe Reutenauer, Complete determination of the zeta function of the Hilbert scheme of n points on a two-dimensional torus, arXiv:1610.07793 [math.NT], 2016, see p. 13 paragraph 3.3.4.
- Christian Kassel, Christophe Reutenauer, The Fourier expansion of eta(z)eta(2z)eta(3z)/eta(6z), arXiv:1603.06357 [math.NT], 2016.
- Michael Somos, Introduction to Ramanujan theta functions
- Eric Weisstein's World of Mathematics, Ramanujan Theta Functions
For the square of this series see
A252650.
-
a[ n_] := SeriesCoefficient[ QPochhammer[ q]^2 / (QPochhammer[ q, q^6] QPochhammer[ q^5, q^6]), {q, 0, n}];
a[ n_] := SeriesCoefficient[ (1/2) EllipticThetaPrime[ 1, 0, q^(1/2)] / EllipticTheta[ 1, Pi/6, q^(1/2)], {q, 0, n}];
-
{a(n) = my(A); if( n<0, 0, A = x * O(x^n); polcoeff( eta(x + A) * eta(x^2 + A) * eta(x^3 + A) / eta(x^6 + A), n))};
-
{a(n) = if( n<1, n==0, (-1)^n * (1 - (n%3==2)*3) * sumdiv(n, d, [0, 1, 2, -1][d%4 + 1] * if(d%9, 1, 4) * (-1)^((d%8==6) + n+d)))}; /* Michael Somos, Jun 04 2015 */
A385001
Irregular triangle read by rows: T(n,k) is the number of partitions of n with k designated summands, n >= 0, 0 <= k <= A003056(n).
Original entry on oeis.org
1, 0, 1, 0, 3, 0, 4, 1, 0, 7, 3, 0, 6, 9, 0, 12, 15, 1, 0, 8, 30, 3, 0, 15, 45, 9, 0, 13, 67, 22, 0, 18, 99, 42, 1, 0, 12, 135, 81, 3, 0, 28, 175, 140, 9, 0, 14, 231, 231, 22, 0, 24, 306, 351, 51, 0, 24, 354, 551, 97, 1, 0, 31, 465, 783, 188, 3, 0, 18, 540, 1134, 330, 9
Offset: 0
Triangle begins:
--------------------------------------------
n\k: 0 1 2 3 4 5 6
--------------------------------------------
0 | 1;
1 | 0, 1;
2 | 0, 3;
3 | 0, 4, 1;
4 | 0, 7, 3;
5 | 0, 6, 9;
6 | 0, 12, 15, 1;
7 | 0, 8, 30, 3;
8 | 0, 15, 45, 9;
9 | 0, 13, 67, 22;
10 | 0, 18, 99, 42, 1;
11 | 0, 12, 135, 81, 3;
12 | 0, 28, 175, 140, 9;
13 | 0, 14, 231, 231, 22;
14 | 0, 24, 306, 351, 51;
15 | 0, 24, 354, 551, 97, 1;
16 | 0, 31, 465, 783, 188, 3;
17 | 0, 18, 540, 1134, 330, 9;
18 | 0, 39, 681, 1546, 568, 22;
19 | 0, 20, 765, 2142, 918, 51;
20 | 0, 42, 945, 2835, 1452, 108;
21 | 0, 32, 1040, 3758, 2233, 208, 1;
...
For n = 6 and k = 1 there are 12 partitions of 6 with only one designated summand as shown below:
6'
3'+ 3
3 + 3'
2'+ 2 + 2
2 + 2'+ 2
2 + 2 + 2'
1'+ 1 + 1 + 1 + 1 + 1
1 + 1'+ 1 + 1 + 1 + 1
1 + 1 + 1'+ 1 + 1 + 1
1 + 1 + 1 + 1'+ 1 + 1
1 + 1 + 1 + 1 + 1'+ 1
1 + 1 + 1 + 1 + 1 + 1'
So T(6,1) = 12, the same as A000203(6) = 12.
.
For n = 6 and k = 2 there are 15 partitions of 6 with two designated summands as shown below:
5'+ 1'
4'+ 2'
4'+ 1'+ 1
4'+ 1 + 1'
3'+ 1'+ 1 + 1
3'+ 1 + 1'+ 1
3'+ 1 + 1 + 1'
2'+ 2 + 1'+ 1
2'+ 2 + 1 + 1'
2 + 2'+ 1'+ 1
2 + 2'+ 1 + 1'
2'+ 1'+ 1 + 1 + 1
2'+ 1 + 1'+ 1 + 1
2'+ 1 + 1 + 1'+ 1
2'+ 1 + 1 + 1 + 1'
So T(6,2) = 15, the same as A002127(6) = 15.
.
For n = 6 and k = 3 there is only one partition of 6 with three designated summands as shown below:
3'+ 2'+ 1'
So T(6,3) = 1, the same as A002128(6) = 1.
There are 28 partitions of 6 with designated summands, so A077285(6) = 28.
.
-
b:= proc(n, i) option remember; `if`(n=0, 1, `if`(i<1, 0,
b(n, i-1)+add(expand(b(n-i*j, i-1)*j*x), j=1..n/i)))
end:
T:= n-> (p-> seq(coeff(p,x,i), i=0..degree(p)))(b(n$2)):
seq(T(n), n=0..20); # Alois P. Heinz, Jul 18 2025
A053993
The number phi_2(n) of Frobenius partitions that allow up to 2 repetitions of an integer in a row.
Original entry on oeis.org
1, 1, 3, 5, 9, 14, 24, 35, 55, 81, 120, 171, 248, 345, 486, 669, 920, 1246, 1690, 2256, 3014, 3984, 5253, 6870, 8970, 11618, 15022, 19306, 24745, 31557, 40154, 50845, 64244, 80850, 101501, 126982, 158514, 197218, 244865, 303143, 374497, 461435
Offset: 0
1 + x + 3*x^2 + 5*x^3 + 9*x^4 + 14*x^5 + 24*x^6 + 35*x^7 + 55*x^8 + ...
q^-1 + q^11 + 3*q^23 + 5*q^35 + 9*q^47 + 14*q^59 + 24*q^71 + 35*q^83 + ...
a(6) = 24 since the 5 partitions 6 = 5+1 = 4+2 = 3+2+1 = 2+2+2 each contribute 1, the 3 partitions 4+1+1 = 3+3 = 2+2+1+1 each contribute 2, the partition 3+1+1+1 contributes 3, the partition 2+1+1+1+1 contributes 4, and the partition 1+1+1+1+1+1 contributes 6 to give total 24 = 5*1 + 3*2 + 1*3 + 1*4 + 1*6. - _Michael Somos_, Mar 09 2011
- George E. Andrews, Generalized Frobenius partitions, Memoirs of the American Mathematical Society, Number 301, May 1984.
-
b:= proc(n, i) option remember; `if`(n=0, 1, `if`(i<1, 0, b(n, i-1)
+add(b(n-i*j, i-1)*`if`(irem(i, 2)=1, j, 1), j=1..n/i)))
end:
a:= n-> b(n, n):
seq(a(n), n=0..50); # Alois P. Heinz, Jul 16 2013
-
b[n_, i_] := b[n, i] = If[n==0, 1, If[i<1, 0, b[n, i-1] + Sum[b[n-i*j, i-1] * If[Mod[i, 2] == 1, j, 1], {j, 1, n/i}]]]; a[n_] := b[n, n]; Table[a[n], {n, 0, 50}] (* Jean-François Alcover, Jul 15 2015, after Alois P. Heinz *)
QP = QPochhammer; s = QP[q^4] * (QP[q^6]^2 / (QP[q] * QP[q^2] * QP[q^3] * QP[q^12])) + O[q]^50; CoefficientList[s, q] (* Jean-François Alcover, Nov 09 2015, adapted from PARI *)
-
{a(n) = local(A); if( n<0, 0, A = x * O(x^n); polcoeff( eta(x^4 + A) * eta(x^6 + A)^2 / (eta(x + A) * eta(x^2 + A) * eta(x^3 + A) * eta(x^12 + A)), n))} /* Michael Somos, Mar 09 2011 */
A102186
The PDO(n) function (Partitions with Designated summands in which all parts are Odd): the sum of products of multiplicities of parts in all partitions of n into odd parts.
Original entry on oeis.org
1, 1, 2, 4, 5, 8, 12, 16, 22, 32, 42, 56, 76, 98, 128, 168, 213, 272, 348, 436, 548, 688, 852, 1056, 1308, 1603, 1964, 2404, 2920, 3544, 4296, 5176, 6230, 7488, 8958, 10704, 12772, 15182, 18024, 21368, 25254, 29808, 35136, 41308, 48504, 56880, 66552, 77776
Offset: 0
a(8)=22 because in the six partitions of 8 into odd parts, namely, 71,53,5111,3311,311111,11111111, the multiplicities of the parts are (1,1),(1,1),(1,3),(2,2),(1,5),(8) with products 1,1,3,4,5,8, having sum 22.
- Seiichi Manyama, Table of n, a(n) for n = 0..10000 (terms 0..1000 from Alois P. Heinz)
- G. E. Andrews, R. P. Lewis, and J. Lovejoy, Partitions with designated summands, Acta Arith. 105 (2002), no. 1, 51-66.
- Shane Chern, Dennis Eichhorn, Shishuo Fu, and James A. Sellers, Convolutive sequences, I: Through the lens of integer partition functions, arXiv:2507.10965 [math.CO], 2025. See pp. 4, 10, 12.
- Nayandeep Deka Baruah and Kanan Kumari Ojah, Partitions with designated summands in which all parts are odd, INTEGERS 15 (2015), #A9.
- Shishuo Fu and James Sellers, A refined view of a curious identity for partitions into odd parts with designated summands, arXiv:2505.21111 [math.CO], 2025.
Cf.
A077285 (partitions with designated summands).
-
b:= proc(n, i) option remember; `if`(n=0, 1, `if`(i<1, 0,
b(n, i-2) +add(b(n-i*j, i-2)*j, j=1..n/i)))
end:
a:= n-> b(n, iquo(1+n,2)*2-1):
seq(a(n), n=0..50); # Alois P. Heinz, Feb 26 2013
-
b[n_, i_] := b[n, i] = If[n == 0, 1, If[i < 1, 0, b[n, i - 2] + Sum[b[n - i*j, i - 2]*j, {j, 1, n/i}]]]; a[n_] := b[n, Quotient[1 + n, 2]*2 - 1]; Table[a[n], {n, 0, 50}] (* Jean-François Alcover, Jan 24 2014, after Alois P. Heinz *)
nmax=60; CoefficientList[Series[Product[(1-x^(4*k)) * (1+x^(3*k)) / ((1-x^k) * (1+x^(6*k))), {k,1,nmax}], {x,0,nmax}], x] (* Vaclav Kotesovec, Nov 28 2015 *)
Table[Total[l = Tally /@ Select[IntegerPartitions@n, VectorQ[#, OddQ] &];
Table[x = l[[i]]; Product[x[[j, 2]], {j, Length[x]}], {i, Length[l]}]], {n, 0, 47}] (* Robert Price, Jun 08 2020 *)
-
{a(n)=local(A); if(n<0, 0, A=x*O(x^n); polcoeff( eta(x^4+A)*eta(x^6+A)^2/ eta(x+A)/eta(x^3+A)/eta(x^12+A), n))} /* Michael Somos, Jul 30 2006 */
A290216
Square array A(n,k), n >= 0, k >= 0, read by antidiagonals, where column k is the expansion of g.f. Product_{i>0} (1 + Sum_{j=1..k} j*x^(j*i)).
Original entry on oeis.org
1, 1, 0, 1, 1, 0, 1, 1, 1, 0, 1, 1, 3, 2, 0, 1, 1, 3, 2, 2, 0, 1, 1, 3, 5, 6, 3, 0, 1, 1, 3, 5, 6, 7, 4, 0, 1, 1, 3, 5, 10, 10, 12, 5, 0, 1, 1, 3, 5, 10, 10, 18, 13, 6, 0, 1, 1, 3, 5, 10, 15, 22, 25, 22, 8, 0, 1, 1, 3, 5, 10, 15, 22, 29, 34, 26, 10, 0, 1, 1, 3, 5
Offset: 0
Square array begins:
1, 1, 1, 1, 1, ...
0, 1, 1, 1, 1, ...
0, 1, 3, 3, 3, ...
0, 2, 2, 5, 5, ...
0, 2, 6, 6, 10, ...
0, 3, 7, 10, 10, ...
Product_{i>0} (1 + Sum_{j=1..k} j*x^(j*i))^m:
A290217 (m=-1), this sequence (m=1),
A293377 (m=2).
A293421
The PD_t(n) function (Number of tagged parts over all the partitions of n with designated summands).
Original entry on oeis.org
1, 3, 6, 13, 24, 45, 77, 132, 213, 346, 537, 834, 1257, 1893, 2778, 4077, 5865, 8421, 11903, 16785, 23364, 32444, 44562, 61041, 82859, 112164, 150639, 201768, 268413, 356100, 469636, 617724, 808236, 1054802, 1370127, 1775286, 2290610, 2948427, 3780717, 4836814
Offset: 1
n = 4
-------------------
4' -> 1
3'+ 1' -> 2
2'+ 2 -> 1
2 + 2' -> 1
2'+ 1'+ 1 -> 2
2'+ 1 + 1' -> 2
1'+ 1 + 1 + 1 -> 1
1 + 1'+ 1 + 1 -> 1
1 + 1 + 1'+ 1 -> 1
1 + 1 + 1 + 1'-> 1
-------------------
a(4) = 13.
-
b:= proc(n, i) option remember; `if`(n=0, [1, 0], `if`(i>1, b(n, i-1), 0)+
add((p-> p+[0, p[1]])(b(n-i*j, min(n-i*j, i-1))*j), j=`if`(i=1, n, 1..n/i)))
end:
a:= n-> b(n$2)[2]:
seq(a(n), n=1..40); # Alois P. Heinz, Jul 18 2025
-
def partition(n, min, max)
return [[]] if n == 0
[max, n].min.downto(min).flat_map{|i| partition(n - i, min, i).map{|rest| [i, *rest]}}
end
def A(n)
partition(n, 1, n).map{|a| a.each_with_object(Hash.new(0)){|v, o| o[v] += 1}.values}.map{|i| i.size * i.inject(:*)}.inject(:+)
end
def A293421(n)
(1..n).map{|i| A(i)}
end
p A293421(40)
A293426
Expansion of Product_{k>0} ((1 - q^(3*k))^3*(1 - q^(6*k))^3)/((1 - q^k)^5*(1 - q^(2*k))^3).
Original entry on oeis.org
1, 5, 23, 77, 244, 677, 1794, 4411, 10454, 23597, 51699, 109378, 225804, 453893, 893872, 1723286, 3265023, 6078557, 11148496, 20146561, 35935772, 63287458, 110186562, 189715530, 323335946, 545666040, 912512366, 1512613763, 2486819428, 4056167621, 6566647376
Offset: 0
-
nmax = 40; CoefficientList[Series[Product[((1 - x^(3*k))^3 * (1 - x^(6*k))^3) / ((1 - x^k)^5 * (1 - x^(2*k))^3), {k, 1, nmax}], {x, 0, nmax}], x] (* Vaclav Kotesovec, Oct 09 2017 *)
max = 30; QP = QPochhammer; s = QP[q^6]/(QP[q]*QP[q^2]*QP[q^3]) + O[q]^(3 max + 3); (1/3)*Table[CoefficientList[s, q][[3*n + 3]], {n, 0, max}] (* Jean-François Alcover, Oct 10 2017, from 1st formula *)
-
m = 40; Vec(prod(k=1, m, ((1 - q^(3*k))^3*(1 - q^(6*k))^3)/((1 - q^k)^5*(1 - q^(2*k))^3)) + O(q^m)) \\ Michel Marcus, Oct 10 2017
A329157
Expansion of Product_{k>=1} (1 - Sum_{j>=1} j * x^(k*j)).
Original entry on oeis.org
1, -1, -3, -3, -4, 3, 2, 19, 21, 32, 40, 45, 16, 8, -18, -125, -164, -291, -358, -530, -588, -724, -592, -675, -358, -207, 570, 1201, 2208, 3333, 4944, 6490, 8277, 10492, 11800, 13260, 14328, 14722, 12942, 12075, 5640, 603, -10444, -21120, -39360, -55876, -83488
Offset: 0
-
b:= proc(n, i) option remember; `if`(n=0, 1, `if`(i>1, b(n, i-1), 0)-
add(b(n-i*j, min(n-i*j, i-1))*j, j=`if`(i=1, n, 1..n/i)))
end:
a:= n-> b(n$2):
seq(a(n), n=0..46); # Alois P. Heinz, Jul 18 2025
-
nmax = 46; CoefficientList[Series[Product[(1 - Sum[j x^(k j), {j, 1, nmax}]), {k, 1, nmax}], {x, 0, nmax}], x]
nmax = 46; CoefficientList[Series[Product[(1 - x^k/(1 - x^k)^2), {k, 1, nmax}], {x, 0, nmax}], x]
Showing 1-10 of 19 results.
Comments