A077425 a(n) == 1 (mod 4) (see A016813), but not a square (i.e., not in A000290).
5, 13, 17, 21, 29, 33, 37, 41, 45, 53, 57, 61, 65, 69, 73, 77, 85, 89, 93, 97, 101, 105, 109, 113, 117, 125, 129, 133, 137, 141, 145, 149, 153, 157, 161, 165, 173, 177, 181, 185, 189, 193, 197, 201, 205, 209, 213, 217, 221, 229, 233, 237, 241, 245, 249, 253, 257
Offset: 1
Links
- Vincenzo Librandi, Table of n, a(n) for n = 1..1000
- S. R. Finch, Class number theory [Cached copy, with permission of the author]
- A. M. Legendre, Expression les plus simples des formules Ly^2+Myz+Nz^2 où M est impair pour toutes les valeurs de B = M^2-4LN depuis B=5 jusqu'à B=305, Essai sur la Théorie des Nombres An VI, Table II. [_Paul Curtz_, Apr 11 2019]
Programs
-
Maple
A077425 := proc(n::integer) local resul,i ; resul := 5 ; i := 1 ; while i < n do resul := resul+4 ; while issqr(resul) do resul := resul+4 ; od ; i:= i+1 ; od ; RETURN(resul) ; end proc: seq(A077425(n),n=1..31) ; # R. J. Mathar, Apr 25 2006
-
Mathematica
Select[Range[5,300,4],!IntegerQ[Sqrt[#]]&] (* Harvey P. Dale, Dec 05 2012 *)
-
PARI
[n | n <- vector(100,n,4*n+1), !issquare(n)] \\ Charles R Greathouse IV, Mar 11 2014
-
PARI
list(lim)=my(v=List()); for(s=2,sqrtint((lim\=1)+1), forstep(n=s^2 + if(s%2,4,1), min((s+1)^2-1,lim), 4, listput(v,n))); Vec(v) \\ Charles R Greathouse IV, Nov 04 2021
-
Python
from operator import sub from sympy import integer_nthroot def A077425(n): return n+sub(*integer_nthroot(n,2))<<2|1 # Chai Wah Wu, Oct 01 2024
Extensions
More terms from Max Alekseyev, Mar 03 2010
Comments