A332114
a(n) = (10^(2n+1)-1)/9 + 3*10^n.
Original entry on oeis.org
4, 141, 11411, 1114111, 111141111, 11111411111, 1111114111111, 111111141111111, 11111111411111111, 1111111114111111111, 111111111141111111111, 11111111111411111111111, 1111111111114111111111111, 111111111111141111111111111, 11111111111111411111111111111, 1111111111111114111111111111111
Offset: 0
- Brady Haran and Simon Pampena, Glitch Primes and Cyclops Numbers, Numberphile video (2015).
- Patrick De Geest, Palindromic Wing Primes: (1)4(1), updated: June 25, 2017.
- Makoto Kamada, Factorization of 11...11411...11, updated Dec 11 2018.
- Index entries for linear recurrences with constant coefficients, signature (111,-1110,1000).
Cf.
A138148 (cyclops numbers with binary digits),
A002113 (palindromes).
Cf.
A332124 ..
A332194 (variants with different repeated digit 2, ..., 9).
Cf.
A332112 ..
A332119 (variants with different middle digit 2, ..., 9).
-
A332114 := n -> (10^(2*n+1)-1)/9+3*10^n;
-
Array[(10^(2 # + 1)-1)/9 + 3*10^# &, 15, 0]
-
apply( {A332114(n)=10^(n*2+1)\9+3*10^n}, [0..15])
-
def A332114(n): return 10**(n*2+1)//9+3*10**n
A107124
Numbers k such that (10^(2*k+1)+27*10^k-1)/9 is prime.
Original entry on oeis.org
2, 3, 32, 45, 1544
Offset: 1
32 is in the sequence because the palindromic number (10^(2*32+1)+27*10^32-1)/9 = 1(32).4.1(32) =
11111111111111111111111111111111411111111111111111111111111111111 is prime.
- C. Caldwell and H. Dubner, "Journal of Recreational Mathematics", Volume 28, No. 1, 1996-97, pp. 1-9.
-
Do[If[PrimeQ[(10^(2n + 1) + 27*10^n - 1)/9], Print[n]], {n, 2200}]
Select[Range[1600],PrimeQ[FromDigits[Join[PadRight[{},#,1],{4},PadRight[ {},#,1]]]]&] (* Harvey P. Dale, Aug 01 2017 *)
-
is(n)=ispseudoprime((10^(2*n+1)+27*10^n-1)/9) \\ Charles R Greathouse IV, May 22 2017
A331866
Numbers k for which R(k) + 3*10^floor(k/2) is prime, where R(k) = (10^k-1)/9 (repunit: A002275).
Original entry on oeis.org
0, 2, 5, 7, 8, 10, 65, 91, 208, 376, 586, 2744, 3089, 19378, 20246
Offset: 1
For n = 0, R(0) + 3*10^floor(0/2) = 3 is prime.
For n = 2, R(2) + 3*10^floor(2/2) = 41 is prime.
For n = 5, R(5) + 3*10^floor(5/2) = 11411 is prime.
For n = 7, R(7) + 3*10^floor(7/2) = 1114111 is prime.
For n = 8, R(8) + 3*10^floor(8/2) = 11141111 is prime.
-
Select[Range[0, 2500], PrimeQ[(10^# - 1)/9 + 3*10^Floor[#/2]] &]
-
for(n=0,9999,ispseudoprime(p=10^n\9+3*10^(n\2))&&print1(n","))
Showing 1-3 of 3 results.
Comments