cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A077859 Expansion of g.f. (1 - x)^(-1)/(1 - 2*x + 2*x^2 + x^3).

Original entry on oeis.org

1, 3, 5, 6, 6, 6, 7, 9, 11, 12, 12, 12, 13, 15, 17, 18, 18, 18, 19, 21, 23, 24, 24, 24, 25, 27, 29, 30, 30, 30, 31, 33, 35, 36, 36, 36, 37, 39, 41, 42, 42, 42, 43, 45, 47, 48, 48, 48, 49, 51, 53, 54, 54, 54, 55, 57, 59, 60, 60, 60, 61, 63, 65, 66, 66, 66, 67, 69, 71, 72, 72, 72, 73, 75
Offset: 0

Views

Author

N. J. A. Sloane, Nov 17 2002

Keywords

Comments

Partial sums of A021823. Second partial sums of A010892. - Paul Barry, Jun 06 2003
Row sums of A144083. - Gary W. Adamson, Sep 10 2008

Crossrefs

Programs

  • Magma
    I:=[1, 3, 5, 6]; [n le 4 select I[n] else 3*Self(n-1)-4*Self(n-2)+3*Self(n-3)-Self(n-4): n in [1..100]]
  • Maple
    A010892 := proc(n) op(1+(n mod 6),[1,1,0,-1,-1,0]) ; end proc:
    A077859 := proc(n) n+2+A010892(n+4) ; end proc:
    seq(A077859(n),n=0..50) ; # R. J. Mathar, Mar 22 2011
  • Mathematica
    CoefficientList[Series[(1 - x)^(-1)/(1 - 2 x + 2 x^2 - x^3), {x, 0, 100}], x] (* Vincenzo Librandi, Feb 04 2014 *)
    LinearRecurrence[{3,-4,3,-1},{1,3,5,6},80] (* Harvey P. Dale, Apr 21 2023 *)
  • PARI
    Vec(1/(1-x)/(1-2*x+2*x^2-x^3)+O(x^99)) \\ Charles R Greathouse IV, Sep 24 2012
    

Formula

G.f.: 1/((1-x)^2*(1-x+x^2)).
a(n) = Sum_{k=0..n} (k+1)*2*sin(Pi(n-k)/3 + Pi/3)/sqrt(3). - Paul Barry, May 18 2004
a(n) = Sum_{k=0..n} binomial(n-2k, n-k-1). - Paul Barry, Jan 15 2005
a(n) = n + 2 + (-1 + n - 3*floor(n/3))*(-1)^floor(n/3). - Tani Akinari, Jun 27 2013
a(n) = n + 1 + a(n-1) - a(n-2), with a(-1) = a(-2) = 0. - Richard R. Forberg, Jul 11 2013
a(n) = 3*a(n-1) - 4*a(n-2) + 3*a(n-3) - 1*a(n-4). - Joerg Arndt, Jul 12 2013
a(n) = Sum_{k=0..n} (-1)^k*(n+1-k)*b(k), where b(n) = A049347(n). - Mircea Merca, Feb 04 2014
E.g.f.: exp(x)*(2 + x) + exp(x/2)*(sqrt(3)*sin(sqrt(3)*x/2) - 3*cos(sqrt(3)*x/2))/3. - Stefano Spezia, Feb 11 2023
Sum_{n>=0} (-1)^n/a(n) = log(2)/3 + log(3)/2 = log(108)/6. - Amiram Eldar, Feb 14 2023