cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A075115 Binomial transform of A073145: a(n)=Sum(binomial(n,k)*A073145(k),(k=0,..,n)).

Original entry on oeis.org

3, 2, 0, 2, 8, 12, 12, 16, 32, 56, 80, 112, 176, 288, 448, 672, 1024, 1600, 2496, 3840, 5888, 9088, 14080, 21760, 33536, 51712, 79872, 123392, 190464, 293888, 453632, 700416, 1081344, 1669120, 2576384, 3977216, 6139904, 9478144, 14630912
Offset: 0

Views

Author

Mario Catalani (mario.catalani(AT)unito.it), Sep 02 2002

Keywords

Comments

a(n) is nonnegative since the real root of x^3-2*x^2+2*x-2 is dominant. - Michael Somos, Feb 28 2007

Crossrefs

Programs

  • Mathematica
    CoefficientList[Series[(3-4*x+2*x^2)/(1-2*x+2*x^2-2*x^3), {x, 0, 40}], x]
    LinearRecurrence[{2,-2,2},{3,2,0},40] (* Harvey P. Dale, Jan 24 2019 *)
  • PARI
    {a(n)= if(n<0, 0, polsym( x^3 -2*x^2 +2*x -2, n) [n+1])} /* Michael Somos, Feb 28 2007 */

Formula

a(n)=2a(n-1)-2a(n-2)+2a(n-3), a(0)=3, a(1)=2, a(2)=0.
G.f.: (3 - 4*x + 2*x^2)/(1 - 2*x + 2*x^2 - 2*x^3).
a(n) = 3*A077943(n) -4*A077943(n-1) +2*A077943(n-2). - R. J. Mathar, Mar 13 2021

A077993 Expansion of 1/(1+2*x+2*x^2+2*x^3).

Original entry on oeis.org

1, -2, 2, -2, 4, -8, 12, -16, 24, -40, 64, -96, 144, -224, 352, -544, 832, -1280, 1984, -3072, 4736, -7296, 11264, -17408, 26880, -41472, 64000, -98816, 152576, -235520, 363520, -561152, 866304, -1337344, 2064384, -3186688, 4919296, -7593984, 11722752, -18096128, 27934720, -43122688
Offset: 0

Views

Author

N. J. A. Sloane, Nov 17 2002

Keywords

Crossrefs

Cf. A077943.

Programs

  • GAP
    a:=[1,-2,2];; for n in [4..50] do a[n]:=-2*(a[n-1]+a[n-2]+a[n-3]); od; a; # G. C. Greubel, Jun 27 2019
  • Magma
    R:=PowerSeriesRing(Integers(), 50); Coefficients(R!( 1/(1+2*x+2*x^2+2*x^3) )); // G. C. Greubel, Jun 27 2019
    
  • Mathematica
    LinearRecurrence[{-2,-2,-2}, {1,-2,2}, 50] (* or *) CoefficientList[ Series[1/(1+2*x+2*x^2+2*x^3), {x,0,50}], x] (* G. C. Greubel, Jun 27 2019 *)
  • PARI
    my(x='x+O('x^50)); Vec(1/(1+2*x+2*x^2+2*x^3)) \\ G. C. Greubel, Jun 27 2019
    
  • Sage
    (1/(1+2*x+2*x^2+2*x^3)).series(x, 50).coefficients(x, sparse=False) # G. C. Greubel, Jun 27 2019
    

Formula

a(n) = (-1)^n * A077943(n). - R. J. Mathar, Aug 04 2008

A078003 Expansion of (1-x)/(1-2*x+2*x^2-2*x^3).

Original entry on oeis.org

1, 1, 0, 0, 2, 4, 4, 4, 8, 16, 24, 32, 48, 80, 128, 192, 288, 448, 704, 1088, 1664, 2560, 3968, 6144, 9472, 14592, 22528, 34816, 53760, 82944, 128000, 197632, 305152, 471040, 727040, 1122304, 1732608, 2674688, 4128768, 6373376, 9838592, 15187968, 23445504, 36192256
Offset: 0

Views

Author

N. J. A. Sloane, Nov 17 2002

Keywords

Crossrefs

Cf. A077943.

Programs

  • GAP
    a:=[1,1,0];; for n in [4..50] do a[n]:=2*(a[n-1]-a[n-2]+a[n-3]); od; a; # G. C. Greubel, Jun 27 2019
  • Magma
    R:=PowerSeriesRing(Integers(), 50); Coefficients(R!( (1-x)/( 1-2*x+2*x^2-2*x^3) )); // G. C. Greubel, Jun 27 2019
    
  • Mathematica
    LinearRecurrence[{2,-2,2}, {1,1,0}, 50] (* or *) CoefficientList[
    Series[(1-x)/(1-2*x+2*x^2-2*x^3), {x,0,50}], x] (* G. C. Greubel, Jun 27 2019 *)
  • PARI
    Vec((1-x)/(1-2*x+2*x^2-2*x^3)+O(x^50)) \\ Charles R Greathouse IV, Sep 26 2012
    
  • Sage
    ((1-x)/(1-2*x+2*x^2-2*x^3)).series(x, 50).coefficients(x, sparse=False) # G. C. Greubel, Jun 27 2019
    

Formula

a(n) = A077943(n) - A077943(n-1). - R. J. Mathar, Aug 04 2008

A104767 a(n)=n for n <= 3, a(n) = 2a(n-1) - 2a(n-2) + 2a(n-3) for n >= 4.

Original entry on oeis.org

0, 1, 2, 3, 4, 6, 10, 16, 24, 36, 56, 88, 136, 208, 320, 496, 768, 1184, 1824, 2816, 4352, 6720, 10368, 16000, 24704, 38144, 58880, 90880, 140288, 216576, 334336, 516096, 796672, 1229824, 1898496, 2930688, 4524032, 6983680, 10780672, 16642048, 25690112, 39657472
Offset: 0

Views

Author

Don N. Page, Oct 13 2005

Keywords

Comments

Also a(n) for n > 0 is the number of terms in the expansion of (x - y) * (x - y) * (x^2 - y^2) * (x^3 - y^3) * ... * (x^F_n-1 - y^F_n-1), where F_n is the n-th Fibonacci number. In this definition one can take y=1. In other words the sequence gives the number of nonzero terms in the polynomial Product {k=1..n-1}, (1 - x^F_k). - Robert G. Wilson v, May 12 2013
Also a(n) for n > 0 is the number of terms in the expansion of Product_{k=2..n+1} (x^F_k - y^F_k) with coefficient +1 (same with -1). We can take y=1 and the Product_{k=2..n+1} (x^F_k - 1) has a(n) terms with coefficient +1 and same with -1. Note that no coefficient is greater than 1 in absolute value. - Michael Somos, May 17 2018

Examples

			From _Michael Somos_, May 17 2018: (Start)
For n=3, (x - y) * (x - y) = x^2 - 2*x*y + y^2 has a(3) = 3 terms.
For n=4, (x - y) * (x - y) * (x^2 - y^2) = x^4 - 2*x^3*y + 2*x*y^3 - y^4 has a(4) = 4 terms.
for n=2, (x - y) * (x^2 - y^2) = x^3 - x^2*y - x*y^2 + y^3 has a(2) = 2 terms with + sign and also with - sign.
For n=3, (x - y) * (x^2 - y^2) * (x^3 - y^3) = x^6 - x^5*y - x^4*y^2 + x^2*y^4 + x*y^5 - y^6 has a(3) = 3 terms with + sign and also with - sign. (End)
		

Crossrefs

Cf. A093996.

Programs

  • GAP
    a:=[0,1,2,3,4];; for n in [5..50] do a[n]:=2*a[n-1]-2*a[n-2]+2*a[n-3]; od; a; # Muniru A Asiru, May 17 2018
    
  • Maple
    f:=proc(n) option remember; if n <= 4 then RETURN(n); fi; 2*f(n-4)+f(n-1); end;
  • Mathematica
    a[n_] := a[n] = If[n < 4, n, 2a[n - 1] - 2a[n - 2] + 2a[n - 3]]; Table[ a[n], {n, 0, 39}] (* Robert G. Wilson v *)
    Join[{0}, LinearRecurrence[{2, -2, 2}, {1, 2, 3}, 41]] (* Robert G. Wilson v, May 12 2013 *)
    Join[{0}, LinearRecurrence[{1, 0, 0, 2}, {1, 2, 3, 4}, 41]] (* Robert G. Wilson v, May 12 2013 *)
    a[n_] := Length@ ExpandAll@ Product[1 - x^Fibonacci[k], {k, n-1}]; a[1] = 1; (* Robert G. Wilson v, May 12 2013 *)
    nxt[{a_,b_,c_}]:={b,c,2c-2b+2a}; Join[{0},NestList[nxt,{1,2,3},40][[All,1]]] (* Harvey P. Dale, Nov 30 2021 *)
  • PARI
    a=vector(100); a[1]=1;a[2]=2;a[3]=3; for(n=4, #a, a[n] = 2*a[n-1]-2*a[n-2]+2*a[n-3]); concat(0,a) \\ Altug Alkan, May 18 2018

Formula

a(n) = n for n <= 4; for n >= 5, a(n) = 2a(n-4) + a(n-1).
G.f.: (x + x^3)/(-2*x^3 + 2*x^2 - 2*x + 1). a(n) = A077943(n-3) + A077943(n-1).

Extensions

More terms from Robert G. Wilson v, Oct 14 2005

A077858 Expansion of (1-x)^(-1)/(1-2*x+2*x^2-2*x^3).

Original entry on oeis.org

1, 3, 5, 7, 11, 19, 31, 47, 71, 111, 175, 271, 415, 639, 991, 1535, 2367, 3647, 5631, 8703, 13439, 20735, 31999, 49407, 76287, 117759, 181759, 280575, 433151, 668671, 1032191, 1593343, 2459647, 3796991, 5861375, 9048063, 13967359, 21561343, 33284095, 51380223
Offset: 0

Views

Author

N. J. A. Sloane, Nov 17 2002

Keywords

Crossrefs

Cf. A077943.

Programs

  • Mathematica
    CoefficientList[Series[(1-x)^(-1)/(1-2x+2x^2-2x^3), {x,0,40}], x]  (* Harvey P. Dale, Mar 31 2011 *)

Formula

a(n)-a(n-1) = A077943(n). - R. J. Mathar, Mar 13 2021
Showing 1-5 of 5 results.