cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-1 of 1 results.

A052101 One of the three sequences associated with the polynomial x^3 - 2.

Original entry on oeis.org

1, 1, 1, 3, 9, 21, 45, 99, 225, 513, 1161, 2619, 5913, 13365, 30213, 68283, 154305, 348705, 788049, 1780947, 4024809, 9095733, 20555613, 46454067, 104982561, 237252321, 536171481, 1211705163, 2738358009, 6188472981, 13985460405
Offset: 0

Views

Author

Ashok K. Gupta and Ashok K. Mittal (akgjkiapt(AT)hotmail.com), Jan 20 2000

Keywords

Comments

If x^3 = 2 and n >= 0, then there are unique integers a, b, c such that (1 + x)^n = a + b*x + c*x^2. The coefficient a is a(n).

Examples

			From the Schoof reference, pp. 17, 18: Set pi = 1 + sqrt[3]{2}. For every integer k >= 0, there are unique a_k,b_k,c_k in Q such that pi^k = a_k + b_k sqrt[3]{2} + c_k sqrt[3]{4}. The coefficients a_k,b_k,c_k are actually in Z:
     Coefficients a_k, b_k, c_k:
     k      0     1     2     3     4     5      6
     ----------------------------------------------
     a_k    1     1     1     3     9     21     45
     b_k    0     1     2     3     6     15     36
     c_k    0     0     1     3     6     12     27
     ----------------------------------------------
G.f. = 1 + x + x^2 + 3*x^3 + 9*x^4 + 21*x^5 + 45*x^6 + 99*x^7 + 225*x^8 + ...
		

References

  • Maribel Díaz Noguera [Maribel Del Carmen Díaz Noguera], Rigoberto Flores, Jose L. Ramirez, and Martha Romero Rojas, Catalan identities for generalized Fibonacci polynomials, Fib. Q., 62:2 (2024), 100-111. See Table 3.
  • R. Schoof, Catalan's Conjecture, Springer-Verlag, 2008, pp. 17-18.

Crossrefs

Programs

  • Magma
    [n le 3 select 1 else 3*(Self(n-1) -Self(n-2) +Self(n-3)): n in [1..41]]; // G. C. Greubel, Apr 15 2021
    
  • Maple
    A052101 := n -> add(2^j*binomial(n, 3*j), j = 0..floor(n/3));
    seq(A052101(n), n = 0..40); # G. C. Greubel, Apr 15 2021
  • Mathematica
    LinearRecurrence[{3, -3, 3},{1, 1, 1},31] (* Ray Chandler, Sep 23 2015 *)
  • PARI
    {a(n) = polcoeff( lift( Mod(1 + x, x^3 - 2)^n ), 0)} /* Michael Somos, Aug 05 2009 */
    
  • PARI
    {a(n) = sum(k=0, n\3, 2^k * binomial(n, 3*k))} /* Michael Somos, Aug 05 2009 */
    
  • PARI
    {a(n) = if( n<0, 0, polcoeff( (1 - x)^2 / (1 - 3*x + 3*x^2 - 3*x^3) + x * O(x^n), n))} /* Michael Somos, Aug 05 2009 */
    
  • Sage
    [sum(2^j*binomial(n, 3*j) for j in (0..n//3)) for n in (0..40)] # G. C. Greubel, Apr 15 2021

Formula

a(n) = 3*a(n-1) - 3*a(n-2) + 3*a(n-3).
a(n)/a(n-1) tends to 2.259921049... = 1 + 2^(1/3) (a real root to (x - 1)^3 = 2 or x^3 - 3x^2 + 3x - 3 = 0). A 3 X 3 matrix corresponding to the latter polynomial is [0 1 0 / 0 0 1 / 3 -3 3]. Let the matrix = M. Then a(n) = the center term in M^n * [1, 1, 1]. M^[1, 1, 1] = [9, 21, 45], center term = a(4) - Gary W. Adamson, Mar 28 2004
a(n) = Sum_{0..floor(n/3)}, 2^k * binomial(n, 3*k). - Ralf Stephan, Aug 30 2004
From Paul Curtz, Mar 10 2008: (Start)
Equals the first differences of A052102.
Equals the second differences of A052103.
Equals the binomial transform of A077959.
a(n) = 4*a(n-1) - 6*a(n-2) + 6*a(n-3) - 3*a(n-4).
A052103 is binomial transform of c(n)=0, 1, 1, 0, 2, 2, 0, 4, 4, 0, 8, 8, ... b(n+1) - 2*b(n) is essentially 3*b(n). (End)
G.f.: (1 - x)^2 / (1 - 3*x + 3*x^2 - 3*x^3).
Showing 1-1 of 1 results.