cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A078010 Expansion of (1-x)/(1 - x - x^2 - 2*x^3).

Original entry on oeis.org

1, 0, 1, 3, 4, 9, 19, 36, 73, 147, 292, 585, 1171, 2340, 4681, 9363, 18724, 37449, 74899, 149796, 299593, 599187, 1198372, 2396745, 4793491, 9586980, 19173961, 38347923, 76695844, 153391689, 306783379, 613566756, 1227133513, 2454267027, 4908534052
Offset: 0

Views

Author

N. J. A. Sloane, Nov 17 2002

Keywords

Comments

For n > 0, a(n) is the number of ways to tile a strip of length n with squares, dominoes, and two colors of trominoes, with the restriction that the first tile cannot be a square. - Greg Dresden and Bora Bursalı, Aug 31 2023

Examples

			a(6) = 19 = A077947(4) + 2*A077947(3) = 9 + 2*5 = 19.
G.f. = 1 + x^2 + 3*x^3 + 4*x^4 + 9*x^5 + 19*x^6 + 36*x^7 + 73*x^8 + ... - _Michael Somos_, Nov 18 2020
		

Crossrefs

Programs

  • GAP
    a:=[1,0,1];; for n in [4..50] do a[n]:=a[n-1]+a[n-2]+2*a[n-3]; od; a; # G. C. Greubel, Jun 28 2019
  • Magma
    R:=PowerSeriesRing(Integers(), 50); Coefficients(R!( (1-x)/(1-x-x^2-2*x^3) )); // G. C. Greubel, Jun 28 2019
    
  • Mathematica
    CoefficientList[Series[(1-x)/(1-x-x^2-2*x^3), {x,0,50}],x]  (* Harvey P. Dale, Mar 17 2011 *)
    LinearRecurrence[{1, 1, 2}, {1, 0, 1}, 50] (* Vladimir Joseph Stephan Orlovsky, Feb 24 2012 *)
  • PARI
    Vec((1-x)/(1-x-x^2-2*x^3)+O(x^50)) \\ Charles R Greathouse IV, Sep 26 2012
    
  • PARI
    {a(n) = ([0, 1, 1; 1, 1, 0; 0, 2, 0]^n)[1, 1]}; /* Michael Somos, Nov 18 2020 */
    
  • Sage
    ((1-x)/(1-x-x^2-2*x^3)).series(x, 50).coefficients(x, sparse=False) # G. C. Greubel, Jun 28 2019
    

Formula

a(0)=1, a(1)=0, a(2)=1, a(n) = a(n-1) + a(n-2) + 2*a(n-3) for n > 2. - Philippe Deléham, Sep 19 2006
a(n) + a(n+1) = A122552(n+1). - Philippe Deléham, Sep 25 2006
If p[1]=0, p[2]=1, p[i]=3, (i>2), and if A is Hessenberg matrix of order n defined by: A[i,j]=p[j-i+1], (i<=j), A[i,j]=-1, (i=j+1), and A[i,j]=0 otherwise. Then, for n >= 1, a(n)=det A. - Milan Janjic, May 02 2010
For n > 3, a(n) = A077947(n-2) + 2*A077947(n-3), with A077947 beginning (1, 2, 5, 9, 18, 37, ...); "1" has offset 1. - Gary W. Adamson, May 13 2013
a(n) = 2^(n-1) - 3*floor((2^(n-1))/7) - 1, for n >= 1. - Ridouane Oudra, Dec 02 2019
G.f.: (1 - x) / ((1 - 2*x) * (1 + x + x^2)). - Michael Somos, Nov 18 2020