cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A078109 Let u(1)=u(2)=1, u(3)=2n, u(k) = abs(u(k-1)-u(k-2)-u(k-3)) and M(k) = Max_{1<=i<=k} u(i), then for any k >= a(n), M(k) = floor(sqrt(k + A078108(n))).

Original entry on oeis.org

3, 10, 38, 10, 35, 66, 19, 150, 90, 30, 243, 159, 138, 270, 19, 186, 35, 178, 358, 127, 46, 334, 123, 370, 438, 343, 182, 430, 46, 454, 470, 534, 30, 618, 734, 903, 570, 302, 571, 638, 30, 166, 822, 647, 426, 998, 75, 106, 606, 322, 82, 210, 1798, 330, 506
Offset: 1

Views

Author

Benoit Cloitre, Dec 05 2002

Keywords

Comments

Conjecture : a(n) always exists, a(n)/n^2 is bounded. If initial conditions are u(1)=u(2)=1, u(3)=2n+1, then u(k) reaches a 2-cycle for any k>m large enough (cf. A078098)

Crossrefs

Extensions

Typos in data corrected and more terms from Sean A. Irvine, Jun 16 2025

A079623 a(1) = a(2) = 1, a(3)=4, a(n) = abs(a(n-1) - a(n-2) - a(n-3)).

Original entry on oeis.org

1, 1, 4, 2, 3, 3, 2, 4, 1, 5, 0, 6, 1, 5, 2, 4, 3, 3, 4, 2, 5, 1, 6, 0, 7, 1, 6, 2, 5, 3, 4, 4, 3, 5, 2, 6, 1, 7, 0, 8, 1, 7, 2, 6, 3, 5, 4, 4, 5, 3, 6, 2, 7, 1, 8, 0, 9, 1, 8, 2, 7, 3, 6, 4, 5, 5, 4, 6, 3, 7, 2, 8, 1, 9, 0, 10, 1, 9, 2, 8, 3, 7, 4, 6, 5, 5, 6, 4, 7, 3, 8, 2, 9, 1, 10, 0, 11, 1, 10, 2, 9, 3, 8
Offset: 1

Views

Author

Benoit Cloitre, Jan 30 2003

Keywords

Crossrefs

Programs

  • Haskell
    a079623 n = a079623_list !! (n-1)
    a079623_list = 1 : 1 : 4 : zipWith3 (\u v w -> abs (w - v - u))
                   a079623_list (tail a079623_list) (drop 2 a079623_list)
    -- Reinhard Zumkeller, Oct 11 2014
    
  • Magma
    m:=120;
    A079623:=[n le 3 select 4^Floor((n-1)/2) else Abs(Self(n-1) - Self(n-2) - Self(n-3)): n in [1..m+5]];
    [A079623[n]: n in [1..m]]; // G. C. Greubel, Sep 11 2024
    
  • Mathematica
    nxt[{a_,b_,c_}]:={b,c,Abs[c-b-a]}; NestList[nxt,{1,1,4},110][[All,1]] (* Harvey P. Dale, Aug 12 2020 *)
  • SageMath
    @CachedFunction
    def a(n): # a = A079623
        if n<4: return 4^((n-1)//2)
        else: return abs(a(n-1)-a(n-2)-a(n-3))
    [a(n) for n in range(1,101)] # G. C. Greubel, Sep 11 2024

Formula

a(n*(n-10)) = 0.
Max( a(k) : 1<=k<=n) = floor(sqrt(n+24)).

A079624 a(1) = a(2) = 1, a(3) = 6, a(n) = abs(a(n-1) - a(n-2) - a(n-3)).

Original entry on oeis.org

1, 1, 6, 4, 3, 7, 0, 10, 3, 7, 6, 4, 9, 1, 12, 2, 11, 3, 10, 4, 9, 5, 8, 6, 7, 7, 6, 8, 5, 9, 4, 10, 3, 11, 2, 12, 1, 13, 0, 14, 1, 13, 2, 12, 3, 11, 4, 10, 5, 9, 6, 8, 7, 7, 8, 6, 9, 5, 10, 4, 11, 3, 12, 2, 13, 1, 14, 0, 15, 1, 14, 2, 13, 3, 12, 4, 11, 5, 10, 6, 9, 7, 8, 8, 7, 9, 6, 10, 5, 11, 4, 12, 3
Offset: 1

Views

Author

Benoit Cloitre, Jan 30 2003

Keywords

Crossrefs

Programs

  • Haskell
    a079624 n = a079624_list !! (n-1)
    a079624_list = 1 : 1 : 6 : zipWith3 (\u v w -> abs (w - v - u))
                   a079624_list (tail a079624_list) (drop 2 a079624_list)
    -- Reinhard Zumkeller, Oct 11 2014
    
  • Magma
    m:=120;
    A079624:=[n le 3 select 6^Floor((n-1)/2) else Abs(Self(n-1) - Self(n-2) - Self(n-3)): n in [1..m+5]];
    [A079624[n]: n in [1..m]]; // G. C. Greubel, Sep 11 2024
    
  • Mathematica
    a[n_]:= a[n]= If[n<4, 6^Floor[(n-1)/2], Abs[a[n-1] -a[n-2] -a[n-3]]];
    Table[a[n], {n,100}] (* G. C. Greubel, Sep 11 2024 *)
  • SageMath
    @CachedFunction
    def a(n): # a = A079624
        if n<4: return 6^((n-1)//2)
        else: return abs(a(n-1)-a(n-2)-a(n-3))
    [a(n) for n in range(1,101)] # G. C. Greubel, Sep 11 2024

Formula

For n >= 5, a(n^2 + 24*n - 13) = 0.
For n >= 38, Max( a(k) : 1<=k<=n) = floor(sqrt(n+156)).
Showing 1-3 of 3 results.