cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 39 results. Next

A281112 Decimal expansion of (conjectured) limit c(n+1)/c(n), where c = A078140.

Original entry on oeis.org

1, 6, 8, 8, 9, 2, 4, 1, 1, 0, 7, 6, 9, 1, 6, 5, 2, 0, 6, 6, 8, 6, 3, 5, 9, 6, 4, 3, 7, 1, 9, 8, 3, 3, 6, 0, 8, 9, 6, 1, 4, 6, 2, 6, 4, 6, 6, 1, 6, 6, 7, 2, 1, 9, 1, 6, 4, 5, 6, 6, 3, 5, 6, 6, 6, 4, 0, 8, 9, 2, 9, 4, 3, 8, 6, 0, 4, 8, 4, 5, 9, 7, 5, 6, 9, 4
Offset: 1

Views

Author

Clark Kimberling, Feb 10 2017

Keywords

Examples

			Limit_{n->oo} c(n+1)/c(n) = 1.688924110769165206686359... (conjectured)
		

Crossrefs

Programs

  • Mathematica
    z = 3880; r = GoldenRatio;
    f[x_] := f[x] = Sum[Floor[r*(k + 1)] x^k, {k, 0, z}];
    t = CoefficientList[Series[1/f[x], {x, 0, z}], x];(* A078140 *)
    Table[N[t[[n]]/t[[n - 1]], 80], {n, 2, z, 100}]
    u = N[t[[z]]/t[[z - 1]], 120]
    RealDigits[Abs[u], 10][[1]] (* A281112 *)

A289265 Decimal expansion of the real root of x^3 - x^2 - 2 = 0.

Original entry on oeis.org

1, 6, 9, 5, 6, 2, 0, 7, 6, 9, 5, 5, 9, 8, 6, 2, 0, 5, 7, 4, 1, 6, 3, 6, 7, 1, 0, 0, 1, 1, 7, 5, 3, 5, 3, 4, 2, 6, 1, 8, 1, 7, 9, 3, 8, 8, 2, 0, 8, 5, 0, 7, 7, 3, 0, 2, 2, 1, 8, 7, 0, 7, 2, 8, 4, 4, 5, 2, 4, 4, 5, 3, 4, 5, 4, 0, 8, 0, 0, 7, 2, 2, 1, 3, 9, 9
Offset: 1

Views

Author

Clark Kimberling, Jul 14 2017

Keywords

Examples

			1.6956207695598620574163671001175353426181793882085077...
		

References

  • D. E. Daykin and S. J. Tucker, Introduction to Dragon Curves, unpublished, 1976, end of section 2. See links in A003229.

Crossrefs

Cf. A078140 (includes guide to constants similar to A289260).

Programs

  • Mathematica
    z = 2000; r = 8/5;
    u = CoefficientList[Series[1/Sum[Floor[(k + 1)*r] (-x)^k, {k, 0, z}], {x, 0, z}], x];  (* A289260 *)
    v = N[u[[z]]/u[[z - 1]], 200]
    RealDigits[v, 10][[1]] (* A289265 *)
  • PARI
    solve(x=1, 2, x^3 - x^2 - 2) \\ Michel Marcus, Oct 26 2019

Formula

r = D^(1/3) + (1/9)*D^(-1/3) + 1/3 where D = 28/27 + (1/9)*sqrt(29*3) [Chang and Zhang] from the usual cubic solution formula. Or similarly r = (1/3)*(1 + C + 1/C) where C = (28 + sqrt(29*27))^(1/3). - Kevin Ryde, Oct 25 2019

A288235 Coefficients in the expansion of 1/([r]-[2*r]*x+[3*r]*x^2-...); [ ]=floor, r=sqrt(e).

Original entry on oeis.org

1, 3, 5, 9, 17, 30, 52, 91, 160, 281, 493, 865, 1518, 2664, 4675, 8204, 14397, 25265, 44337, 77805, 136534, 239592, 420441, 737798, 1294700, 2271961, 3986877, 6996242, 12277127, 21544115, 37805987, 66342603, 116419152, 204294349, 358499270, 629100742
Offset: 0

Views

Author

Clark Kimberling, Jul 11 2017

Keywords

Comments

A288236(k) = a(k) if and only if k <= 56.
Conjecture: the sequence is strictly increasing.

Crossrefs

Cf. A078140 (includes guide to related sequences), A288236.

Programs

  • Mathematica
    r = Sqrt[E];
    u = 1000; (* # initial terms from given series *)
    v = 100;  (* # coefficients in reciprocal series *)
    CoefficientList[Series[1/Sum[Floor[r*(k + 1)] (-x)^k, {k, 0, u}], {x, 0, v}], x]

Formula

G.f.: 1/(Sum_{k>=0} [(k+1)*r]*(-x)^k), where r = sqrt(e) and [ ] = floor.

A288236 Coefficients in the expansion of 1/([r]-[2*r]*x+[3*r]*x^2-...); [ ]=floor, r=-4/5+sqrt(6).

Original entry on oeis.org

1, 3, 5, 9, 17, 30, 52, 91, 160, 281, 493, 865, 1518, 2664, 4675, 8204, 14397, 25265, 44337, 77805, 136534, 239592, 420441, 737798, 1294700, 2271961, 3986877, 6996242, 12277127, 21544115, 37805987, 66342603, 116419152, 204294349, 358499270, 629100742
Offset: 0

Views

Author

Clark Kimberling, Jul 11 2017

Keywords

Comments

A288235(k) = a(k) if and only if k <= 56.
Conjecture: the sequence is strictly increasing.

Crossrefs

Cf. A078140 (includes guide to related sequences), A288235.

Programs

  • Mathematica
    r = -4/5 + Sqrt[6];
    u = 1000; (* # initial terms from given series *)
    v = 100;   (* # coefficients in reciprocal series *)
    CoefficientList[Series[1/Sum[Floor[r*(k + 1)] (-x)^k, {k, 0, u}], {x, 0, v}], x]

Formula

G.f.: 1/(Sum_{k>=0} [(k+1)*r]*(-x)^k), where r = -4/5 + sqrt(6) and [ ] = floor.

A288237 Coefficients in the expansion of 1/([r]-[2*r]*x+[3*r]*x^2-...); [ ]=floor, r=sqrt(11/4).

Original entry on oeis.org

1, 3, 5, 9, 17, 30, 52, 91, 160, 281, 493, 865, 1518, 2664, 4675, 8204, 14397, 25265, 44337, 77806, 136540, 239611, 420488, 737905, 1294933, 2272449, 3987870, 6998224, 12281027, 21551700, 37820597, 66370521, 116472145, 204394366, 358687108, 629451995
Offset: 0

Views

Author

Clark Kimberling, Jul 11 2017

Keywords

Comments

Conjecture: the sequence is strictly increasing.

Crossrefs

Cf. A078140 (includes guide to related sequences).

Programs

  • Maple
    N:= 100: # to get a(0)..a(N)
    r:= sqrt(11/4):
    G:= 1/add(floor((k+1)*r)*(-x)^k,k=0..N):
    S:= series(G,x,N+1):
    seq(coeff(S,x,j),j=0..N); # Robert Israel, Jul 13 2017
  • Mathematica
    r = Sqrt[11/4];
    u = 1000; (* # initial terms from given series *)
    v = 100;  (* # coefficients in reciprocal series *)
    CoefficientList[Series[1/Sum[Floor[r*(k + 1)] (-x)^k, {k, 0, u}], {x, 0, v}], x]

Formula

G.f.: 1/(Sum_{k>=0} [(k+1)*r]*(-x)^k), where r = sqrt(11/4) and [ ] = floor.

A289005 Decimal expansion of the limiting ratio of consecutive terms of A288235.

Original entry on oeis.org

1, 7, 5, 4, 8, 1, 7, 3, 5, 1, 4, 0, 9, 7, 9, 6, 8, 7, 2, 3, 3, 0, 0, 0, 7, 6, 5, 0, 0, 0, 8, 3, 3, 5, 0, 0, 6, 7, 6, 0, 1, 7, 8, 9, 8, 8, 0, 4, 4, 0, 1, 7, 4, 2, 1, 3, 5, 8, 2, 7, 9, 8, 1, 5, 4, 4, 1, 9, 3, 6, 5, 7, 4, 0, 8, 3, 2, 5, 3, 7, 5, 9, 7, 7, 2, 5
Offset: 1

Views

Author

Clark Kimberling, Jul 14 2017

Keywords

Examples

			1.75481735140979687233000...
		

Crossrefs

Cf. A288235, A289032, A078140 (includes guide to related constants).

Programs

  • Mathematica
    z = 2000; r = Sqrt[E];
    u = CoefficientList[Series[1/Sum[Floor[(k + 1)*r] (-x)^k, {k, 0, z}], {x, 0, z}], x];  (* A288235 *)
    v = N[u[[z]]/u[[z - 1]], 200]
    RealDigits[v, 10][[1]](* A289005 *)

A289032 Decimal expansion of the limiting ratio of consecutive terms of A288236.

Original entry on oeis.org

1, 7, 5, 4, 8, 1, 7, 3, 5, 1, 4, 0, 9, 7, 3, 1, 1, 2, 8, 7, 9, 3, 3, 0, 6, 6, 5, 3, 8, 1, 7, 6, 7, 8, 7, 7, 8, 8, 2, 2, 0, 4, 3, 2, 2, 8, 4, 1, 4, 1, 6, 9, 5, 7, 6, 0, 4, 0, 7, 1, 2, 8, 4, 1, 4, 2, 2, 0, 8, 9, 3, 1, 8, 2, 2, 1, 5, 0, 9, 4, 7, 7, 3, 1, 5, 8
Offset: 1

Views

Author

Clark Kimberling, Jul 14 2017

Keywords

Examples

			1.754817351409731128793306653817678778822...
		

Crossrefs

Cf. A288235, A289005, A078140 (includes guide to related constants).

Programs

  • Mathematica
    z = 2000; r = -4/5 + Sqrt[6];
    u = CoefficientList[Series[1/Sum[Floor[(k + 1)*r] (-x)^k, {k, 0, z}], {x, 0, z}], x];  (* A288236 *)
    v = N[u[[z]]/u[[z - 1]], 200]
    RealDigits[v, 10][[1]](* A289032 *)

A289260 Coefficients in the expansion of 1/([r]-[2r]x+[3r]x^2-...); [ ]=floor, r=8/5.

Original entry on oeis.org

1, 3, 5, 9, 17, 30, 52, 90, 154, 262, 446, 758, 1286, 2182, 3702, 6278, 10646, 18054, 30614, 51910, 88022, 149254, 253078, 429126, 727638, 1233798, 2092054, 3547334, 6014934, 10199046, 17293718, 29323590, 49721686, 84309126, 142956310, 242399686, 411017942
Offset: 0

Views

Author

Clark Kimberling, Jul 14 2017

Keywords

Comments

Conjecture: the sequence is strictly increasing.

Crossrefs

Cf. A078140 (includes guide to related sequences), A289265.
Cf. A279780.

Programs

  • Mathematica
    r = 8/5;
    u = 1000; (* # initial terms from given series *)
    v = 100;   (* # coefficients in reciprocal series *)
    CoefficientList[Series[1/Sum[Floor[r*(k + 1)] (-x)^k, {k, 0, u}], {x, 0, v}], x]
    LinearRecurrence[{2,-1,2,-2},{1,3,5,9,17,30,52},40] (* Harvey P. Dale, Oct 13 2023 *)
  • PARI
    Vec((1 + x)^2*(1 - x + x^2 - x^3 + x^4) / ((1 - x)*(1 - x - 2*x^3)) + O(x^50)) \\ Colin Barker, Jul 20 2017

Formula

G.f.: 1/(Sum_{k>=0} [(k+1)*r](-x)^k), where r = 8/5 and [ ] = floor.
From Colin Barker, Jul 14 2017: (Start)
G.f.: (1 + x)^2*(1 - x + x^2 - x^3 + x^4) / ((1 - x)*(1 - x - 2*x^3)).
a(n) = 2*a(n-1) - a(n-2) + 2*a(n-3) - 2*a(n-4) for n>3.
(End)
a(n) = abs(A279780(n)). - Alois P. Heinz, Jul 15 2017

A289917 Decimal expansion of the limiting ratio of consecutive terms of A289916.

Original entry on oeis.org

1, 7, 2, 2, 0, 8, 3, 8, 0, 5, 7, 3, 9, 0, 4, 2, 2, 4, 5, 0, 2, 7, 0, 6, 9, 2, 1, 2, 1, 5, 3, 8, 3, 1, 4, 6, 2, 0, 7, 0, 1, 1, 6, 5, 5, 5, 7, 5, 1, 5, 5, 0, 3, 0, 7, 0, 4, 8, 7, 8, 3, 1, 3, 3, 5, 4, 2, 3, 0, 3, 7, 9, 5, 0, 6, 6, 0, 9, 8, 2, 9, 0, 7, 0, 9, 4
Offset: 1

Views

Author

Clark Kimberling, Jul 18 2017

Keywords

Examples

			1.722083805739042245027069212153831462070116555...
		

Crossrefs

Cf. A078140 (includes guide to related constants), A289916.

Programs

  • Mathematica
    z = 2000; r = 9/7;
    u = CoefficientList[Series[1/Sum[Round[(k + 1)*r] (-x)^k, {k, 0, z}], {x, 0, z}],
      x];  (* A289916  *)
    v = N[u[[z]]/u[[z - 1]], 200]
    RealDigits[v, 10][[1]] (* A289917 *)

Formula

Equals (1 + sqrt(13) + sqrt(2*sqrt(13) - 2))/4. - Vaclav Kotesovec, Aug 27 2021
Largest real root of x^4 - x^3 - x^2 - x + 1. - Linas Vepstas, Feb 06 2024

A289921 Coefficients of 1/([1+r] - [1+2r]x + [1+3r]x^2 - ...), where [ ] = floor and r = 9/10.

Original entry on oeis.org

1, 2, 1, 0, 0, 0, 0, 0, 0, 0, 1, 3, 3, 1, 0, 0, 0, 0, 0, 0, 2, 7, 9, 5, 1, 0, 0, 0, 0, 0, 4, 16, 25, 19, 7, 1, 0, 0, 0, 0, 8, 36, 66, 63, 33, 9, 1, 0, 0, 0, 16, 80, 168, 192, 129, 51, 11, 1, 0, 0, 32, 176, 416, 552, 450, 231, 73, 13, 1, 0, 64, 384, 1008
Offset: 0

Views

Author

Clark Kimberling, Jul 18 2017

Keywords

Comments

Conjecture: all the terms are nonnegative.

Crossrefs

Cf. A078140 (includes guide to related sequences), A289922, A289923.

Programs

  • Mathematica
    z = 2000; r = 9/10;
    CoefficientList[Series[1/Sum[Floor[1 + (k + 1)*r] (-x)^k, {k, 0, z}], {x, 0, z}],
      x];
  • PARI
    Vec( (1 - x)*(1 + x)^2*(1 - x + x^2 - x^3 + x^4)*(1 + x + x^2 + x^3 + x^4) / (1 - x + x^2 - x^3 + x^4 - x^5 + x^6 - x^7 + x^8 - x^9 - x^10) + O(x^100)) \\ Colin Barker, Jul 21 2017

Formula

G.f.: 1/([1+r] - [1+2r]x + [1+3r]x^2 - ...), where [ ] = floor and r = 9/10.
G.f.: (1 - x)*(1 + x)^2*(1 - x + x^2 - x^3 + x^4)*(1 + x + x^2 + x^3 + x^4) / (1 - x + x^2 - x^3 + x^4 - x^5 + x^6 - x^7 + x^8 - x^9 - x^10). - Colin Barker, Jul 20 2017
Showing 1-10 of 39 results. Next