cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A276175 a(n) = (a(n-1)+1)*(a(n-2)+1)*(a(n-3)+1)/a(n-4) with a(0) = a(1) = a(2) = a(3) = 1.

Original entry on oeis.org

1, 1, 1, 1, 8, 36, 666, 222111, 685187756, 2819713283228248, 644335913093223286486628176, 5604757351123068775966272886689217889936356651, 14861563788248216173988661093334637018340529129342104300621091389266132702213641
Offset: 0

Views

Author

Bruno Langlois, Aug 23 2016

Keywords

Comments

Conjecture: a(n) is an integer for all n >= 0. It has been checked by computer for n <= 40. A proof was proposed by 'mercio' as an answer to the MSE question, which however lacks details and heavily relies on computation. [Updated by Max Alekseyev, May 07 2023]

Crossrefs

Programs

  • Mathematica
    RecurrenceTable[{a[n] == (a[n - 1] + 1) (a[n - 2] + 1) (a[n - 3] + 1)/a[n - 4],
    a[0] == a[1] == a[2] == a[3] == 1}, a, {n, 0, 12}] (* Michael De Vlieger, Aug 25 2016 *)
    a[ n_] := With[{m = Max[3 - n, n]}, If[ m < 4, 1, (a[m - 1] + 1) (a[m - 2] + 1) (a[m - 3] + 1)/a[m - 4]]]; (* Michael Somos, Jun 02 2019 *)
  • PARI
    a(n) = if (n <=3, 1, (a(n-1)+1)*(a(n-2)+1)*(a(n-3)+1)/a(n-4)); \\ Michel Marcus, Aug 23 2016
    
  • Ruby
    def A(m, n)
      a = Array.new(m, 1)
      ary = [1]
      while ary.size < n + 1
        i = a[1..-1].inject(1){|s, i| s * (i + 1)}
        break if i % a[0] > 0
        a = *a[1..-1], i / a[0]
        ary << a[0]
      end
      ary
    end
    def A276175(n)
      A(4, n)
    end # Seiichi Manyama, Aug 23 2016

Formula

Let b(n) = (b(n-1)*b(n-2)*b(n-3)+1)/b(n-4) with b(0) = 1/2, b(1) = 4, b(2) = b(3) = 1/2, then a(n) = b(n)*b(n+1)*b(n+2). - Seiichi Manyama, Sep 03 2016
The sequence 4*b(n) is given by A362884. Correspondingly, a(n) = A362884(n) * A362884(n+1) * A362884(n+2) / 64. - Max Alekseyev, May 07 2023
a(n) = a(3-n), 0 = a(n)*a(n+4)*(a(n+4)+1) - a(n+5)*a(n+1)*(a(n+1)+1) for all n in Z. - Michael Somos, Feb 23 2019
log(a(n)) ~ c * A289917^n, where c = 0.26774381278698... - Vaclav Kotesovec, Aug 27 2021

A289916 Coefficients of 1/(Sum_{k>=0} round((k+1)*r)(-x)^k), where r = 9/7.

Original entry on oeis.org

1, 3, 5, 8, 13, 22, 39, 69, 120, 206, 353, 607, 1046, 1803, 3106, 5348, 9208, 15856, 27306, 47025, 80982, 139457, 240155, 413566, 712196, 1226463, 2112073, 3637166, 6263503, 10786276, 18574872, 31987488, 55085136, 94861220, 163358969, 281317834, 484452887
Offset: 0

Views

Author

Clark Kimberling, Jul 18 2017

Keywords

Comments

Conjecture: the sequence is strictly increasing.

Crossrefs

Cf. A078140 (includes guide to related sequences), A289917.

Programs

  • Mathematica
    z = 2000; r = 9/7;
    u = CoefficientList[Series[1/Sum[Round[(k + 1)*r] (-x)^k, {k, 0, z}], {x, 0, z}],
      x];  (* A289916  *)
    v = N[u[[z]]/u[[z - 1]], 200]
    RealDigits[v, 10][[1]] (* A289917 *)
  • PARI
    Vec((1+x)^2*(1-x+x^2-x^3+x^4-x^5+x^6) / ((1-x+x^2)*(1-x-x^2-x^3+x^4)) + O(x^50)) \\ Colin Barker, Jul 20 2017

Formula

G.f.: 1/(Sum_{k>=0} round((k+1)*r)(-x)^k), where r = 9/7.
From Colin Barker, Jul 19 2017: (Start)
G.f.: (1+x)^2*(1-x+x^2-x^3+x^4-x^5+x^6) / ((1-x+x^2)*(1-x-x^2-x^3+x^4)).
a(n) = 2*a(n-1) - a(n-2) + a(n-3) - a(n-4) + 2*a(n-5) - a(n-6) for n>5.
(End)
Showing 1-2 of 2 results.