cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A078308 a(n) = Sum_{d divides n} d^(n/d + 1).

Original entry on oeis.org

1, 5, 10, 25, 26, 80, 50, 161, 163, 290, 122, 988, 170, 796, 1580, 2305, 290, 5561, 362, 10670, 9404, 5912, 530, 58436, 16251, 19258, 66340, 118640, 842, 381740, 962, 431105, 547172, 268214, 509500, 3534037, 1370, 1056880, 4813052, 8616326, 1682
Offset: 1

Views

Author

Vladeta Jovovic, Nov 22 2002

Keywords

Crossrefs

Programs

  • Maple
    A078308 := proc(n)
            add( d^(n/d+1),d=numtheory[divisors](n)) ;
    end proc:
    seq(A078308(n),n=1..10) ; # R. J. Mathar, Dec 14 2011
  • Mathematica
    Table[CoefficientList[Series[-Log[Product[(1 - k x^k), {k, 1, 60}]], {x, 0, 60}],x][[n + 1]] (n), {n, 1, 60}] (* Benedict W. J. Irwin, Jul 04 2016 *)
    Table[Total[#^(n/#+1)&/@Divisors[n]],{n,50}] (* Harvey P. Dale, Aug 02 2025 *)
  • PARI
    a(n) = sumdiv(n, d, d^(n/d+1)); \\ Michel Marcus, Jul 04 2016
    
  • PARI
    N=66; x='x+O('x^N); Vec(x*deriv(-log(prod(k=1, N, 1-k*x^k)))) \\ Seiichi Manyama, Jun 02 2019

Formula

G.f.: Sum_{n>0} n^2*x^n/(1-n*x^n).
L.g.f.: -log(Product_{ k>0 } (1-k*x^k)) = Sum_{ n>=0 } (a(n)/n)*x^n. - Benedict W. J. Irwin, Jul 04 2016