A078368 A Chebyshev S-sequence with Diophantine property.
1, 19, 360, 6821, 129239, 2448720, 46396441, 879083659, 16656193080, 315588584861, 5979526919279, 113295422881440, 2146633507828081, 40672741225852099, 770635449783361800, 14601400804658022101
Offset: 0
Links
- Vincenzo Librandi, Table of n, a(n) for n = 0..200
- A. F. Horadam, Special properties of the sequence W_n(a,b; p,q), Fib. Quart., 5.5 (1967), 424-434. Case a=0,b=1; p=19, q=-1.
- Tanya Khovanova, Recursive Sequences
- W. Lang, On polynomials related to powers of the generating function of Catalan's numbers, Fib. Quart. 38 (2000) 408-419. Eq.(44), lhs, m=21.
- Index entries for sequences related to Chebyshev polynomials.
- Index entries for linear recurrences with constant coefficients, signature (19,-1).
Crossrefs
Programs
-
Mathematica
Join[{a=1,b=19},Table[c=19*b-a;a=b;b=c,{n,40}]] (* Vladimir Joseph Stephan Orlovsky, Feb 14 2011 *) LinearRecurrence[{19,-1},{1,19},20] (* Harvey P. Dale, Feb 10 2019 *)
-
Sage
[lucas_number1(n,19,1) for n in range(1,20)] # Zerinvary Lajos, Jun 25 2008
Formula
a(n) = 19*a(n-1)-a(n-2), n >= 1; a(-1)=0, a(0)=1.
a(n) = (ap^(n+1)-am^(n+1))/(ap-am) with ap = (19+sqrt(357))/2 and am = (19-sqrt(357))/2.
a(n) = S(2*n+1, sqrt(21))/sqrt(21) = S(n, 19); S(n, x) := U(n, x/2), Chebyshev polynomials of the 2nd kind, A049310.
G.f.: 1/(1-19*x+x^2).
a(n) = Sum_{k=0..n} A101950(n,k)*18^k. - Philippe Deléham, Feb 10 2012
Product {n >= 0} (1 + 1/a(n)) = 1/17*(17 + sqrt(357)). - Peter Bala, Dec 23 2012
Product {n >= 1} (1 - 1/a(n)) = 1/38*(17 + sqrt(357)). - Peter Bala, Dec 23 2012
Comments