cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A097832 Partial sums of Chebyshev sequence S(n,19)= U(n,19/2)=A078368(n).

Original entry on oeis.org

1, 20, 380, 7201, 136440, 2585160, 48981601, 928065260, 17584258340, 333172843201, 6312699762480, 119608122643920, 2266241630472001, 42938982856324100, 813574432639685900, 15414975237297708001
Offset: 0

Views

Author

Wolfdieter Lang, Aug 31 2004

Keywords

Crossrefs

Cf. A212336 for more sequences with g.f. of the type 1/(1-k*x+k*x^2-x^3).

Formula

a(n) = sum(S(k, 19), k=0..n) with S(k, 19) = U(k, 19/2) = A078368(k) Chebyshev's polynomials of the second kind.
G.f.: 1/((1-x)*(1-19*x+x^2)) = 1/(1-20*x+20*x^2-x^3).
a(n) = 20*a(n-1)-20*a(n-2)+a(n-3), n>=2, a(-1)=0, a(0)=1, a(1)=20.
a(n) = 19*a(n-1)-a(n-2)+1, n>=1, a(-1)=0, a(0)=1.
a(n) = (S(n+1, 19) - S(n, 19) -1)/17.

A078369 A Chebyshev T-sequence with Diophantine property.

Original entry on oeis.org

2, 19, 359, 6802, 128879, 2441899, 46267202, 876634939, 16609796639, 314709501202, 5962870726199, 112979834296579, 2140653980908802, 40559445802970659, 768488816275533719, 14560728063432170002
Offset: 0

Views

Author

Wolfdieter Lang, Nov 29 2002

Keywords

Comments

a(n) gives the general (positive integer) solution of the Pell equation a^2 - 357*b^2 =+4 with companion sequence b(n)=A078368(n-1), n>=1.

References

  • O. Perron, "Die Lehre von den Kettenbruechen, Bd.I", Teubner, 1954, 1957 (Sec. 30, Satz 3.35, p. 109 and table p. 108).

Crossrefs

a(n)=sqrt(4 + 357*A078368(n-1)^2), n>=1, (Pell equation d=357, +4).
Cf. A077428, A078355 (Pell +4 equations).

Programs

  • Mathematica
    a[0] = 2; a[1] = 19; a[n_] := 19a[n - 1] - a[n - 2]; Table[ a[n], {n, 0, 15}] (* Robert G. Wilson v, Jan 30 2004 *)
    LinearRecurrence[{19,-1},{2,19},20] (* Harvey P. Dale, Dec 24 2021 *)
  • Sage
    [lucas_number2(n,19,1) for n in range(0,20)] # Zerinvary Lajos, Jun 27 2008

Formula

a(n)=19*a(n-1)-a(n-2), n >= 1; a(-1)=19, a(0)=2.
a(n) = S(n, 19) - S(n-2, 19) = 2*T(n, 19/2) with S(n, x) := U(n, x/2), S(-1, x) := 0, S(-2, x) := -1. S(n, 19)=A078368(n). U-, resp. T-, are Chebyshev's polynomials of the second, resp. first, case. See A049310 and A053120.
G.f.: (2-19*x)/(1-19*x+x^2).
a(n) = ap^n + am^n, with ap := (19+sqrt(357))/2 and am := (19-sqrt(357))/2.

A092499 Chebyshev polynomials S(n-1,21) with Diophantine property.

Original entry on oeis.org

0, 1, 21, 440, 9219, 193159, 4047120, 84796361, 1776676461, 37225409320, 779956919259, 16341869895119, 342399310878240, 7174043658547921, 150312517518628101, 3149388824232642200, 65986852791366858099
Offset: 0

Views

Author

Rainer Rosenthal, Apr 05 2004

Keywords

Comments

Sequence R_21: Starts with 0,1,21 and satisfies A*C=B^2-1 for successive A,B,C.
The natural numbers a(n)=n satisfy the recurrence a(n-1)*a(n+1)=a(n)^2-1. Let R_r denote the sequence starting with 0,1,r and with this recurrence. We see that R_2 = "the natural numbers" and we find R_3 = A001906. These R_r form a "family" of sequences, which coincides with the m-family (r=m-2, n -> n+1) provided by Wolfdieter Lang (see A078368). This sequence R_21 is strongly related to A041833, which gives the denominators in the continued fraction of sqrt(437).
All positive integer solutions of Pell equation b(n)^2 - 437*a(n)^2 = +4 together with b(n)=A097777(n), n>=0.
For n>=2, a(n) equals the permanent of the (n-1)X(n-1) tridiagonal matrix with 21's along the main diagonal, and i's along the superdiagonal and the subdiagonal (i is the imaginary unit). - John M. Campbell, Jul 08 2011
For n>=1, a(n) equals the number of 01-avoiding words of length n-1 on alphabet {0,1,...,20}. - Milan Janjic, Jan 25 2015

Examples

			a(3)=440 because a(1)*440 = a(2)^2-1.
		

Crossrefs

Cf. R_3=A001906, R_4=A001353, R_5=A004254, R_6=A001109, R_7=A004187, R_8=A001090, R_9=A018913, R_10=A004189, R_11=A004190, R_12=A004191, R_13=A078362, R_14=A007655, R_15=A078364, R_16=A077412, R_17=A078366, R_18=A049660, R_19=A078368, R_20=A075843, R_21=this, sequence, R_22=A077421. See also A041219 and A041917.

Programs

  • Mathematica
    LinearRecurrence[{21,-1},{0,1},30] (* Harvey P. Dale, Apr 23 2015 *)
  • Sage
    [lucas_number1(n,21,1) for n in range(0,20)] # Zerinvary Lajos, Jun 25 2008

Formula

a(0)=0, a(1)=1, a(2)=21 and a(n-1)*a(n+1) = a(n)^2-1
a(n) = S(n-1, 21)=U(n-1, 21/2) with S(n, x)=U(n, x/2) Chebyshev's polynomials of the 2nd kind, A049310. S(-1, x)= 0 = U(-1, x).
a(n) = S(2*n-1, sqrt(23))/sqrt(23), n>=1.
a(n) = 21*a(n-1)-a(n-2), n >= 1; a(0)=0, a(1)=1.
a(n) = (ap^n-am^n)/(ap-am) with ap := (21+sqrt(437))/2 and am := (21-sqrt(437))/2.
G.f.: x/(1-21*x+x^2).
a(n+1) = Sum_{k, 0<=k<=n} A101950(n,k)*20^k. - Philippe Deléham, Feb 10 2012
Product {n >= 1} (1 + 1/a(n)) = 1/19*(19 + sqrt(437)). - Peter Bala, Dec 23 2012
Product {n >= 2} (1 - 1/a(n)) = 1/42*(19 + sqrt(437)). - Peter Bala, Dec 23 2012

Extensions

Extension, Chebyshev and Pell comments from Wolfdieter Lang, Aug 31 2004
Corrected by T. D. Noe, Nov 07 2006
Showing 1-3 of 3 results.