A078370 a(n) = 4*(n+1)*n + 5.
5, 13, 29, 53, 85, 125, 173, 229, 293, 365, 445, 533, 629, 733, 845, 965, 1093, 1229, 1373, 1525, 1685, 1853, 2029, 2213, 2405, 2605, 2813, 3029, 3253, 3485, 3725, 3973, 4229, 4493, 4765, 5045, 5333, 5629, 5933, 6245, 6565, 6893, 7229, 7573, 7925, 8285, 8653, 9029
Offset: 0
References
- L. B. W. Jolley, "Summation of Series", Dover Publications, 1961, p. 176.
Links
- Indranil Ghosh, Table of n, a(n) for n = 0..1000
- Leo Tavares, Square illustration.
- Index entries for linear recurrences with constant coefficients, signature (3,-3,1).
Crossrefs
Programs
-
Magma
[4*n^2+4*n+5 : n in [0..80]]; // Wesley Ivan Hurt, Aug 29 2022
-
Mathematica
Table[4 n (n + 1) + 5, {n, 0, 45}] (* or *) Table[8 Binomial[n + 1, 2] + 5, {n, 0, 45}] (* or *) CoefficientList[Series[(5 - 2 x + 5 x^2)/(1 - x)^3, {x, 0, 45}], x] (* Michael De Vlieger, Jan 04 2017 *)
-
PARI
a(n)=4*n^2+4*n+5 \\ Charles R Greathouse IV, Sep 24 2015
-
Python
a= lambda n: 4*n**2+4*n+5 # Indranil Ghosh, Jan 04 2017
-
Scala
(1 to 99 by 2).map(n => n * n + 4) // Alonso del Arte, May 29 2019
Formula
a(n) = (2*n + 1)^2 + 4.
a(n) = 4*(n+1)*n + 5 = 8*binomial(n+1, 2) + 5, hence subsequence of A004770 (5 (mod 8) numbers). [Typo fixed by Zak Seidov, Feb 26 2012]
G.f.: (5 - 2*x + 5*x^2)/(1 - x)^3.
a(n) = 8*n + a(n-1), with a(0) = 5. - Vincenzo Librandi, Aug 08 2010
a(n) = A016754(n) + 4. - Leo Tavares, Feb 22 2023
From Elmo R. Oliveira, Oct 31 2024: (Start)
E.g.f.: (5 + 8*x + 4*x^2)*exp(x).
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3) for n > 2. (End)
Extensions
More terms from Max Alekseyev, Mar 03 2010
Comments