cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A078414 a(n) = (a(n-1)+a(n-2))/7^k, where 7^k is the highest power of 7 dividing a(n-1)+a(n-2).

Original entry on oeis.org

1, 1, 2, 3, 5, 8, 13, 3, 16, 19, 5, 24, 29, 53, 82, 135, 31, 166, 197, 363, 80, 443, 523, 138, 661, 799, 1460, 2259, 3719, 122, 3841, 3963, 7804, 1681, 1355, 3036, 4391, 1061, 5452, 6513, 11965, 18478, 4349, 3261, 7610, 1553, 187, 1740, 1927, 3667, 5594, 27
Offset: 1

Views

Author

Yasutoshi Kohmoto, Dec 28 2002

Keywords

Comments

From Vladimir Shevelev, Apr 01 2013; edited by Danny Rorabaugh, Feb 19 2016: (Start)
If we consider Fibonacci-like numbers {F_p(n)} without positive multiples of p, where p is a fixed prime, then {F_2(n)} has period of length 1, {F_3(n)} has period of length 3, {F_5(n)} has period of length 6. This sequence is the first which does not have a trivial period and, probably, even is non-periodic.
An open question: Is this sequence bounded?
Consider Fibonacci-like sequences without multiples of several primes, defined analogously: e.g., for {F_(p,q)(n)}, a(0)=0, a(1)=1, for n>=2, a(n)=a(n-1)+a(n-2) divided by the maximal possible powers of p and q.
Problem: For what sets of primes is the corresponding Fibonacci-like sequence without multiples of these primes periodic?
Examples: sequence {F_(7,11,13)(n)} has period of length 12: 0, 1, 1, 2, 3, 5, 8, 1, 9, 10, 19, 29, 48, 1, 1, 2, 3, 5,...; {F_(11,13,19)(n)} has period of length 9; {F_(13,19,23)(n)} has period of length 12; {F_(17,19,23,29)(n)} has period of length 15; {F_(19,23,31,53,59,89)(n)} has period of length 24; {F_(23,29,73,233)(n)} has period of length 18.
Don Reble noted that lengths of all such periods could only be multiples of 3 because every Fibonacci-like sequence considered here modulo 2 has the form 0,1,1,0,1,1,... .
(End)

Crossrefs

Programs

  • Maple
    a:= proc(n) option remember; local t, j;
          if n<3 then 1
        else t:= a(n-1)+a(n-2);
             while irem(t, 7, 'j')=0 do t:=j od; t
          fi
        end:
    seq(a(n), n=1..100);  # Alois P. Heinz, Jul 25 2012
  • Mathematica
    nxt[{a_,b_}]:=Module[{n=IntegerExponent[a+b,7]},{b,(a+b)/7^n}]; Transpose[ NestList[nxt,{1,1},60]][[1]] (* Harvey P. Dale, Jul 23 2012 *)

Formula

a(n) = A242603(a(n-1)+a(n-2)). - R. J. Mathar, Mar 13 2024

Extensions

Corrected by Harvey P. Dale, Jul 23 2012