cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 11 results. Next

A046528 Numbers that are a product of distinct Mersenne primes (elements of A000668).

Original entry on oeis.org

1, 3, 7, 21, 31, 93, 127, 217, 381, 651, 889, 2667, 3937, 8191, 11811, 24573, 27559, 57337, 82677, 131071, 172011, 253921, 393213, 524287, 761763, 917497, 1040257, 1572861, 1777447, 2752491, 3120771, 3670009, 4063201, 5332341, 7281799, 11010027, 12189603
Offset: 1

Views

Author

Keywords

Comments

Or, numbers n such that the sum of the divisors of n is a power of 2, see A094502.
Or, numbers n such that the number of divisors of n and the sum of the divisors of n are both powers of 2.
n is a product of distinct Mersenne primes iff sigma(n) is a power of 2: see exercise in Sivaramakrishnan, or Shallit.
Sequence gives n > 1 such that sigma(n) = 2*phi(sigma(n)). - Benoit Cloitre, Feb 22 2002
The graph of this sequence shows a discontinuity at the 4097th number because there is a large relative gap between the 12th and 13th Mersenne primes, A000043. Other discontinuities can be predicted using A078426. - T. D. Noe, Oct 12 2006
Supersequence of A051281 (numbers n such that sigma(n) is a power of tau(n)). Conjecture: numbers n such that sigma(n) = tau(n)^(a/b), where a, b are integers >= 1. Example: sigma(93) = 128 = tau(93)^(7/2) = 4^(7/2). - Jaroslav Krizek, May 04 2013

Examples

			a(20) = 82677 = 3*7*31*127, whose sum of divisors is 131072 = 2^17;
a(27) = 1040257 = 127*8191, whose sum of divisors is 1048576 = 2^20.
		

References

  • J.-M. De Koninck & A. Mercier, 1001 Problèmes en Théorie Classique des Nombres, Problem 264 pp. 188, Ellipses Paris 2004.
  • R. Sivaramakrishnan, Classical Theory of Arithmetic Functions. Dekker, 1989.

Crossrefs

Cf. A000668, A000043, A056652 (product of Mersenne primes), A306204.

Programs

  • Maple
    mersennes:= [seq(numtheory:-mersenne([i]),i=1..10)]:
    sort(select(`<`,map(convert,combinat:-powerset(mersennes),`*`),numtheory:-mersenne([11]))); # Robert Israel, May 01 2016
  • Mathematica
    {1}~Join~TakeWhile[Times @@@ Rest@ Subsets@ # // Sort, Function[k, k <= Last@ #]] &@ Select[2^Range[0, 31] - 1, PrimeQ] (* Michael De Vlieger, May 01 2016 *)
  • PARI
    isok(n) = (n==1) || (ispower(sigma(n), , &r) && (r==2)); \\ Michel Marcus, Dec 10 2013

Formula

Sum_{n>=1} 1/a(n) = Product_{p in A000668} (1 + 1/p) = 1.5855588879... (A306204) - Amiram Eldar, Jan 06 2021

Extensions

More terms from Benoit Cloitre, Feb 22 2002
Further terms from Jon Hart, Sep 22 2006
Entry revised by N. J. A. Sloane, Mar 20 2007
Three more terms from Michel Marcus, Dec 10 2013

A180221 Numbers that can be written as sum of one or more distinct elements of A000043. Numbers k for which sigma(A180162(k))=2^k, k>=2.

Original entry on oeis.org

2, 3, 5, 7, 8, 9, 10, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75
Offset: 1

Views

Author

Walter Kehowski, Aug 16 2010

Keywords

Comments

The distinct values of log_2(sigma(m)), where m > 1 is a term of A046528. - Amiram Eldar, Jun 02 2020

Crossrefs

Cf. A000043, A180162, A046528, A180169. Complement of A078426.

Programs

  • Mathematica
    n = 10; p = MersennePrimeExponent[Range[n]]; Rest[-1 + Position[CoefficientList[Series[Product[(1 + x^p[[k]]), {k, 1, n}], {x, 0, p[[-1]]}], x], ?(# > 0 &)] // Flatten] (* _Amiram Eldar, Jun 02 2020 *)

A180460 a(n) is the smallest number m such that sigma(m)=22^n, or 0 if m does not exist.

Original entry on oeis.org

1, 0, 0, 10363, 136647, 3018141, 66411009, 1636922343, 31276995183, 688217286267, 15200749439001, 324029599659171, 7264291502741679, 160447401116572437, 3530475812620849113, 75514126111770824037, 1662716417771040164631, 36586320846189859358019, 804905851136700392012493, 17704604426749226872106319
Offset: 0

Views

Author

Walter Kehowski, Sep 06 2010

Keywords

Comments

Conjecture: Given any even integer E not a power of 2 (see A078426) there exists a positive integer N such that for all n>=N the equation sigma(m)=E^n has at least one solution for m.

Examples

			a(4)=136647=3^4*7*241 since sigma(3^4*7*241)=(11^2)(2^3)(2*11^2)=2^4*11^4 and 136647 is the smallest such number.
		

Crossrefs

Extensions

Terms a(37) onward (in b-file) from Max Alekseyev, Mar 04 2014

A063883 Number of ways writing n as a sum of different Mersenne prime exponents (terms of A000043).

Original entry on oeis.org

0, 1, 1, 0, 2, 0, 2, 1, 1, 2, 0, 2, 1, 1, 2, 1, 2, 2, 2, 3, 2, 4, 2, 4, 3, 3, 4, 2, 4, 2, 4, 3, 3, 4, 3, 4, 4, 4, 5, 4, 5, 4, 4, 5, 3, 5, 3, 4, 4, 3, 5, 3, 5, 4, 4, 5, 4, 5, 4, 4, 5, 3, 5, 4, 3, 6, 2, 6, 3, 5, 5, 3, 6, 3, 5, 4, 4, 4, 4, 4, 4, 4, 5, 3, 6, 3, 5, 5, 4, 6, 3, 7, 3, 6, 5, 5, 6, 5, 6, 5, 6, 6, 5, 6, 6
Offset: 1

Views

Author

Labos Elemer, Aug 28 2001

Keywords

Comments

This sequence appears to be growing. However, for 704338 < n < 756839, a(n) is 0. See A078426 for the n such that a(n) = 0. - T. D. Noe, Oct 12 2006
Numbers k such that sigma(k) = 2^n. - Juri-Stepan Gerasimov, Mar 08 2017

Examples

			n = 50 = 2 + 5 + 7 + 17 + 19 = 2 + 17 + 31 = 19 + 31, so a(50) = 3. The first numbers for which the number of these Mersenne-exponent partitions is k = 0, 1, 2, 3, 4, 5, 6, 7, 8 are 1, 2, 5, 20, 22, 39, 66, 92, 107, respectively.
		

Crossrefs

Numbers k such that a(k) = m: A078426 (m = 0), A283160 (m = 1).

Programs

  • Maple
    N:= 500: # to get the first N terms
    G:= mul(1+x^i,i=select(t -> numtheory:-mersenne(t)::integer, [$1..N])):
    S:= series(G,x,N+1):
    seq(coeff(S,x,n),n=1..N); # Robert Israel, Sep 22 2016
  • Mathematica
    exponents[n_] := Reap[For[k = 1, k <= n, k++, If[PrimeQ[2^k-1], Sow[k]]]][[2, 1]]; r[n_] := Module[{ee, x, xx}, ee = exponents[n]; xx = Array[x, Length[ee]]; Reduce[And @@ (0 <= # <= 1 & /@ xx) && xx.ee == n, xx, Integers]]; a[n_] := Which[rn = r[n]; Head[rn] === Or, Length[rn],  Head[rn] === And, 1, Head[rn] === Equal, 1, rn === False, 0, True, Print["error ", rn]]; a[1] = 0; Table[a[n], {n, 1, 105}] (* Jean-François Alcover, Feb 05 2014 *)
    With[{e = MersennePrimeExponent[Range[10]]}, Rest@ CoefficientList[Product[1 + x^e[[i]], {i, 1, Length[e]}], x]] (* Amiram Eldar, Dec 23 2024 *)
  • PARI
    first(lim)=my(M=[2, 3, 5, 7, 13, 17, 19, 31, 61, 89, 107, 127, 521, 607, 1279, 2203, 2281, 3217, 4253, 4423, 9689, 9941, 11213, 19937, 21701, 23209, 44497, 86243, 110503, 132049, 216091, 756839, 859433, 1257787, 1398269, 2976221, 3021377, 6972593, 13466917, 20996011, 24036583, 25964951, 30402457, 32582657, 37156667], x='x); if(lim>M[#M], error("Need more Mersenne exponents to compute further")); M=select(p->p<=lim, M); Vec(prod(i=1, #M, 1+x^M[i], O(x^(lim\1+1))+1)) \\ Charles R Greathouse IV, Mar 08 2017
    
  • PARI
    a(n) = sum(k=1, 2^n+1, sigma(k)==2^n); \\ Michel Marcus, Mar 07 2017

Formula

a(n) = A054973(2^n). - Michel Marcus, Mar 08 2017

A063869 Least k such that sigma(k)=m^n for some m>1.

Original entry on oeis.org

2, 3, 7, 217, 21, 2667, 93, 217, 381, 651, 2752491, 2667, 8191, 11811, 24573, 57337, 82677, 172011, 393213, 761763, 1572861, 2752491, 5332341, 11010027, 21845397, 48758691, 85327221, 199753347, 341310837, 677207307, 1398273429, 3220807683
Offset: 1

Views

Author

Labos Elemer, Aug 27 2001

Keywords

Comments

For n=2 to 20 sigma(a(n)) = m^n with m=2 or m=4. Computed terms are products of Mersenne primes (A000668). Is this true for larger n? Validity of a(11) was tested individually.
The Nagell-Ljunggren conjecture implies that sigma(x) is never 3^n for n>1. If this is true, then m=2 and m=4 are the smallest possible solutions. When A063883(n)>0, we can take m=2 and, as explained by Brown, find k to be a product of Mersenne primes (i.e. one of the numbers in A046528). When A063883(n)=0, which is true for the n in A078426, then m=4 and we have a(n)=a(2n) because 4=2^2. - T. D. Noe, Oct 18 2006
Sierpiński says that he proved sigma(x) is never 3^r for r>1. Hence m=2 and m=4 are the smallest possible solutions. When A063883(n)>0, we can take m=2 and, as explained by Brown, find k to be a product of Mersenne primes (i.e. one of the numbers in A046528). When A063883(n)=0, which is true for the n in A078426, then m=4 and we have a(n)=a(2n) because 4=2^2. - T. D. Noe, Oct 18 2006

Examples

			For n = 11, sigma(a(n)) = sigma(2752491) = sigma(3 * 7 * 131071) = 4^11.
		

Crossrefs

Programs

Formula

a(n) = Min{x : A000203(x)=m^n} for some m.

Extensions

a(24) corrected by T. D. Noe, Oct 15 2006

A094502 a(n) = A000203(A046528(n)): sigma of those numbers whose sigma is a power of 2, in order of appearance.

Original entry on oeis.org

1, 4, 8, 32, 32, 128, 128, 256, 512, 1024, 1024, 4096, 4096, 8192, 16384, 32768, 32768, 65536, 131072, 131072, 262144, 262144, 524288, 524288, 1048576, 1048576, 1048576, 2097152, 2097152, 4194304, 4194304, 4194304, 4194304, 8388608
Offset: 1

Views

Author

Labos Elemer, Jun 02 2004

Keywords

Comments

Observe that certain powers of 2 do not arise as sum of divisors of something: 2,16,64,2048. Are there more? Yes, see A094505 and A078426.

Crossrefs

Programs

  • Mathematica
    {ta=Table[0, {100}], u=1}; Do[If[IntegerQ[Log[2, DivisorSigma[1, n]]], Print[n];ta[[u]]=n;u=u+1], {n, 1, 100000000}] DivisorSigma[1, ta]
  • PARI
    isok(n) = (n==1) || (ispower(sigma(n), , &r) && (r==2));
    for(n=1, 1e7, if(isok(n), print1(sigma(n)", "))) \\ Altug Alkan, Nov 01 2015

Formula

a(n) = 2^A048947(n). - R. J. Mathar, Sep 22 2016

A247956 a(n) is the smallest number k such that sigma(k) = 2^n or 0 if no such k exists.

Original entry on oeis.org

1, 0, 3, 7, 0, 21, 0, 93, 217, 381, 651, 0, 2667, 8191, 11811, 24573, 57337, 82677, 172011, 393213, 761763, 1572861, 2752491, 5332341, 11010027, 21845397, 48758691, 85327221, 199753347, 341310837, 677207307, 1398273429, 3220807683, 6192353757, 10836557067
Offset: 0

Views

Author

Jaroslav Krizek, Sep 28 2014

Keywords

Comments

See A078426 for numbers n such that there is no solution to the equation sigma(x) = 2^n.
If a(n) > 0, then it is a term of A046528 (numbers that are a product of distinct Mersenne primes).

Examples

			a(0) = 1 because 1 is the smallest number k with sigma(1) = 1 = 2^0.
a(5) = 21 because 21 is the smallest number k with sigma(k) = 32 = 2^5.
a(6) = 0 because there is no number k with sigma(k) = 64 = 2^6.
		

Crossrefs

Programs

  • PARI
    a(n) = for (k=1, 2^n, if (sigma(k)== 2^n, return (k))); return (0); \\ Michel Marcus, Oct 03 2014, Oct 31 2015
    
  • PARI
    a(n) = max(0, invsigmaMin(1<Amiram Eldar, Dec 31 2024, using Max Alekseyev's invphi.gp (see links).

Formula

a(A078426(n)) = 0.
a(A182221(n)) > 0.

Extensions

a(0) = 1 prepended by Michel Marcus, Oct 31 2015

A094505 Powers of 2 which are not the sum of divisors of any other number. Powers of 2 present in A007369.

Original entry on oeis.org

2, 16, 64, 2048
Offset: 1

Views

Author

Labos Elemer, Jun 02 2004

Keywords

Comments

The next term, 2^470, is too large to include.

Crossrefs

Formula

a(n) = 2^A078426(n).

A283160 Numbers k such that there is exactly one solution to the equation sigma(x) = 2^k, where sigma(x) denotes the sum of the divisors of x.

Original entry on oeis.org

0, 2, 3, 8, 9, 13, 14, 16, 465, 467, 468, 472, 473, 478, 479, 481, 521, 523, 524, 529, 530, 534, 535, 537, 1072, 1074, 1075, 1079, 1080, 1085, 1086, 1088, 1128, 1130, 1131, 1136, 1137, 1141, 1142, 1144, 1744, 1746, 1747, 1751, 1752, 1757, 1758, 1760, 1800, 1802, 1803, 1808, 1809, 1813, 1814
Offset: 1

Views

Author

Juri-Stepan Gerasimov, Mar 01 2017

Keywords

Comments

Numbers n such that there is a unique subset S of the Mersenne exponents A000043 summing to n. - Charles R Greathouse IV, Mar 07 2017

Examples

			8 is in this sequence that k = 217 is the only number having sigma(k) = 2^8.
		

Crossrefs

Programs

  • Mathematica
    With[{e = MersennePrimeExponent[Range[16]]}, Select[Range[0, e[[-1]]], SeriesCoefficient[Series[Product[1 + x^e[[i]], {i, 1, Length[e]}], {x, 0, #}], #] == 1 &]] (* Amiram Eldar, Dec 20 2024 *)
  • PARI
    is(n)=my(N=2^n,s); for(k=1,N, if(sigma(k)==N && s++>1, return(0))); s \\ Charles R Greathouse IV, Mar 07 2017
    
  • PARI
    list(lim)=my(v=List(),M=[2,3,5,7,13,17,19,31,61,89,107,127,521,607,1279,2203,2281,3217,4253,4423,9689,9941,11213,19937,21701,23209,44497,86243,110503,132049,216091,756839,859433,1257787,1398269,2976221,3021377,6972593,13466917,20996011,24036583,25964951,30402457,32582657,37156667], x='x,P); if(lim>M[#M], error("Need more Mersenne exponents to compute further")); M=select(p->p<=lim,M); P=prod(i=1,#M,1+x^M[i],O(x^(lim\1+1))+1); for(i=0,lim, if(polcoeff(P,i)==1, listput(v,i))); P=0; Vec(v) \\ Charles R Greathouse IV, Mar 07 2017

Formula

A063883(a(n)) = 1.

Extensions

a(9)-a(55) from Charles R Greathouse IV, Mar 07 2017

A295043 a(n) is the largest number k such that sigma(k) = 2^n or 0 if no such k exists.

Original entry on oeis.org

1, 0, 3, 7, 0, 31, 0, 127, 217, 381, 889, 0, 3937, 8191, 11811, 27559, 57337, 131071, 253921, 524287, 1040257, 1777447, 4063201, 7281799, 16646017, 32247967, 66584449, 116522119, 225735769, 516026527, 1073602561, 2147483647, 4294434817, 7515217927, 15032385529
Offset: 0

Views

Author

Jaroslav Krizek, Nov 13 2017

Keywords

Comments

If a(n) > 0, then it is a term of A046528 (numbers that are a product of distinct Mersenne primes).

Examples

			a(0) = 1 because 1 is the largest number k with sigma(k) = 1 = 2^0.
a(5) = 31 because 31 is the largest number k with sigma(k) = 32 = 2^5.
a(6) = 0 because there is no number k with sigma(k) = 64 = 2^6.
		

Crossrefs

Cf. A247956 (the smallest number k instead of the largest).
Cf. A078426 (no solution to the equation sigma(x)=2^n).
A000668 (Mersenne primes) is a subsequence.

Programs

  • PARI
    a(n) = {local(r, k); r=0; for(k=1, 2^n, if(sigma(k) == 2^n, r=k)); return(r)}; \\ Michael B. Porter, Nov 14 2017
    
  • PARI
    a(n) = forstep(k=2^n, 1, -1, if (sigma(k)==2^n, return (k))); return (0) \\ Rémy Sigrist, Jan 08 2018
    
  • PARI
    a(n) = invsigmaMax(1<Amiram Eldar, Dec 20 2024, using Max Alekseyev's invphi.gp

Formula

a(A078426(n)) = 0.
a(A180221(n)) > 0.
a(n) <= 2^n - 1 with equality when n is a Mersenne exponent (A000043). - Michael B. Porter, Nov 14 2017
Showing 1-10 of 11 results. Next