A078456 Number of numbers less than prime(1)*...*prime(n) having exactly one prime factor among (prime(1),...,prime(n)) where prime(n) is the n-th prime.
1, 3, 14, 92, 968, 12096, 199296, 3679488, 82607616, 2349508608, 71507128320, 2604912721920, 105300128563200, 4466750187110400, 207324589680230400, 10866166392736972800, 634672612705724006400, 38337584554108256256000
Offset: 1
Keywords
Examples
a(2)=3 since 2*3=6 and 2,3,4 have 1 prime factor among (2,3) 3 1 1 1 1 ... 1 5 1 1 1 ... 1 1 7 1 1 ... 1 1 1 11 1 ... 1 1 1 1 13 ... and so a(2) = 3, a(3) = 3*5 - 1*1 = 14, a(4) = 3*5*7 + 1*1*1 + 1*1*1 - 7*1*1 - 5*1*1 - 3*1*1 = 92, etc.
Links
- Charles R Greathouse IV, Table of n, a(n) for n = 1..350
Programs
-
Mathematica
Table[ Det[ DiagonalMatrix[ Table[ Prime[i+1]-1, {i, 1, n-1} ] ] + 1 ], {n, 1, 20} ] (* Alexander Adamchuk, Jun 02 2006 *)
-
PARI
a(n)=sum(k=1,prod(i=1,n, prime(i)),if(isprime(gcd(k,prod(i=1,n, prime(i)))),1,0))
-
PARI
a(n) = matdet(matrix(n-1, n-1, j, k, if (j==k, prime(j+1), 1))); \\ after Mathematica; Michel Marcus, Oct 02 2016
Formula
a(n) = (prime(n)-1)*a(n-1) + A005867(n). - Matthew Vandermast, Jun 06 2004
Extensions
a(7) from Ralf Stephan, Mar 25 2003
a(8)-a(12) from Matthew Vandermast, Jun 06 2004
More terms from Alexander Adamchuk, Jun 02 2006
Comments