A078458 Total number of factors in a factorization of n into Gaussian primes.
0, 2, 1, 4, 2, 3, 1, 6, 2, 4, 1, 5, 2, 3, 3, 8, 2, 4, 1, 6, 2, 3, 1, 7, 4, 4, 3, 5, 2, 5, 1, 10, 2, 4, 3, 6, 2, 3, 3, 8, 2, 4, 1, 5, 4, 3, 1, 9, 2, 6, 3, 6, 2, 5, 3, 7, 2, 4, 1, 7, 2, 3, 3, 12, 4, 4, 1, 6, 2, 5, 1, 8, 2, 4, 5, 5, 2, 5, 1, 10, 4, 4, 1, 6, 4, 3, 3, 7, 2, 6, 3, 5, 2, 3, 3, 11, 2, 4, 3, 8, 2, 5, 1, 8
Offset: 1
Examples
2 = (1+i)*(1-i), so a(2) = 2; 9 = 3*3, so a(9) = 2. a(1006655265000) = a(2^3*3^2*5^4*7^5*11^3) = 3*a(2)+2*a(3)+4*a(5)+5*a(7)+3*a(11) = 3*2+2*1+4*2+5*1+3*1 = 24. - _Vladeta Jovovic_, Jan 20 2003
Links
- T. D. Noe, Table of n, a(n) for n = 1..10000
- Michael Somos, PARI program for finding prime decomposition of Gaussian integers.
- Eric Weisstein's World of Mathematics, Gaussian Prime.
- Index entries for Gaussian integers and primes.
Crossrefs
Equivalent of arithmetic functions in the ring of Gaussian integers (the corresponding functions in the ring of integers are in the parentheses): A062327 ("d", A000005), A317797 ("sigma", A000203), A079458 ("phi", A000010), A227334 ("psi", A002322), A086275 ("omega", A001221), this sequence ("Omega", A001222), A318608 ("mu", A008683).
Equivalent in the ring of Eisenstein integers: A319444.
Programs
-
Mathematica
Join[{0}, Table[f = FactorInteger[n, GaussianIntegers -> True]; cnt = Total[Transpose[f][[2]]]; If[MemberQ[{-1, I, -I}, f[[1, 1]]], cnt--]; cnt, {n, 2, 100}]] (* T. D. Noe, Mar 31 2014 *) a[n_]:=PrimeOmega[n, GaussianIntegers -> True]; Array[a,104] (* Stefano Spezia, Sep 29 2024 *)
-
PARI
a(n)=my(f=factor(n)); sum(i=1,#f~,if(f[i,1]%4==3,1,2)*f[i,2]) \\ Charles R Greathouse IV, Mar 31 2014
Formula
Fully additive with a(p)=2 if p=2 or p mod 4=1 and a(p)=1 if p mod 4=3. - Vladeta Jovovic, Jan 20 2003
Extensions
More terms from Vladeta Jovovic, Jan 12 2003
Comments