A060114
Least common multiple of all cycle sizes in range [A014137(n-1)..A014138(n-1)] of permutation A057505/A057506.
Original entry on oeis.org
1, 1, 2, 6, 6, 30, 120, 720, 15120, 1164240, 15135120, 283931716867999200, 14510088480716327580681600, 3280681990411073806237542217555200, 936436634805345771521186435213604447980767985241556128000
Offset: 0
Occurs for first time in
A073204 as row 2614.
A051575
a(n) = LCM { Catalan(0), ..., Catalan(n) }.
Original entry on oeis.org
1, 1, 2, 10, 70, 210, 4620, 60060, 60060, 1021020, 19399380, 19399380, 446185740, 2230928700, 13385572200, 388181593800, 12033629407800, 12033629407800, 12033629407800, 445244288088600, 445244288088600, 18255015811632600
Offset: 0
A180402
a(n) = lcm(1,...,Fibonacci(n)).
Original entry on oeis.org
1, 1, 2, 6, 60, 840, 360360, 232792560, 144403552893600, 164249358725037825439200, 718766754945489455304472257065075294400, 33312720618553145840562713089120360606823375590405920630576000
Offset: 1
- Alois P. Heinz, Table of n, a(n) for n = 1..17
- Christopher R. H. Hanusa, T. Zaslavsky, S. Chaiken, A q-Queens Problem. IV. Queens, Bishops, Nightriders (and Rooks), arXiv preprint arXiv:1609.00853 [math.CO], 2016. See Table 8.1.
- V. Kotesovec, Non-attacking chess pieces, 6ed, p.31, 2013
-
a:= n-> ilcm($1..(<<0|1>, <1|1>>^n)[1,2]):
seq(a(n), n=1..14); # Alois P. Heinz, Aug 12 2017
-
Table[Apply[LCM, Range[Fibonacci[k]]], {k, 1, 10}]
Array[LCM @@ Range@Fibonacci@# &, 12] (* Robert G. Wilson v, Sep 05 2010 *)
-
a(n) = lcm([1..fibonacci(n)]); \\ Michel Marcus, Jun 24 2018
Showing 1-3 of 3 results.
Comments