cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A078719 Number of odd terms among n, f(n), f(f(n)), ...., 1 for the Collatz function (that is, until reaching "1" for the first time), or -1 if 1 is never reached.

Original entry on oeis.org

1, 1, 3, 1, 2, 3, 6, 1, 7, 2, 5, 3, 3, 6, 6, 1, 4, 7, 7, 2, 2, 5, 5, 3, 8, 3, 42, 6, 6, 6, 40, 1, 9, 4, 4, 7, 7, 7, 12, 2, 41, 2, 10, 5, 5, 5, 39, 3, 8, 8, 8, 3, 3, 42, 42, 6, 11, 6, 11, 6, 6, 40, 40, 1, 9, 9, 9, 4, 4, 4, 38, 7, 43, 7, 4, 7, 7, 12, 12, 2, 7, 41, 41, 2, 2, 10, 10, 5, 10, 5, 34, 5, 5, 39
Offset: 1

Views

Author

Joseph L. Pe, Dec 20 2002

Keywords

Comments

The Collatz function (related to the "3x+1 problem") is defined by: f(n) = n/2 if n is even; f(n) = 3n + 1 if n is odd. A famous conjecture states that n, f(n), f(f(n)), .... eventually reaches 1.
a(n) = A006667(n) + 1; a(A000079(n))=1; a(A062052(n))=2; a(A062053(n))=3; a(A062054(n))=4; a(A062055(n))=5; a(A062056(n))=6; a(A062057(n))=7; a(A062058(n))=8; a(A062059(n))=9; a(A062060(n))=10. - Reinhard Zumkeller, Oct 08 2011
The count includes also the starting value n if it is odd. See A286380 for the version which never includes n itself. - Antti Karttunen, Aug 10 2017

Examples

			The terms n, f(n), f(f(n)), ...., 1 for n = 12 are: 12, 6, 3, 10, 5, 16, 8, 4, 2, 1, of which 3 are odd. Hence a(12) = 3.
		

Crossrefs

Programs

  • Haskell
    a078719 =
       (+ 1) . length . filter odd . takeWhile (> 2) . (iterate a006370)
    a078719_list = map a078719 [1..]
    -- Reinhard Zumkeller, Oct 08 2011
    
  • Maple
    a:= proc(n) option remember; `if`(n<2, 1,
          `if`(n::even, a(n/2), 1+a(3*n+1)))
        end:
    seq(a(n), n=1..94);  # Alois P. Heinz, Jan 17 2025
  • Mathematica
    f[n_] := Module[{a, i, o}, i = n; o = 1; a = {}; While[i > 1, If[Mod[i, 2] == 1, o = o + 1]; a = Append[a, i]; i = f[i]]; o]; Table[f[i], {i, 1, 100}]
    Table[Count[NestWhileList[If[EvenQ[#], #/2, 3 # + 1] &, n, # > 1 &], ?OddQ], {n, 94}] (* _Jayanta Basu, Jun 15 2013 *)
  • PARI
    a(n) = {my(x=n, v=List([])); while(x>1, if(x%2==0, x=x/2, listput(v, x); x=3*x+1)); 1+#v;} \\ Jinyuan Wang, Dec 29 2019

Formula

a(n) = A286380(n) + A000035(n). - Antti Karttunen, Aug 10 2017
a(n) = A258145(A003602(n)-1). - Alan Michael Gómez Calderón, Sep 15 2024

Extensions

"Escape clause" added to definition by N. J. A. Sloane, Jun 06 2017