cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 13 results. Next

A078843 Where 3^n occurs in n-almost primes, starting at a(0)=1.

Original entry on oeis.org

1, 2, 3, 5, 8, 14, 23, 39, 64, 103, 169, 269, 427, 676, 1065, 1669, 2628, 4104, 6414, 10023, 15608, 24281, 37733, 58503, 90616, 140187, 216625, 334527, 516126, 795632, 1225641, 1886570, 2901796, 4460359, 6851532, 10518476, 16138642, 24748319
Offset: 0

Views

Author

Benoit Cloitre and Paul D. Hanna, Dec 10 2002

Keywords

Examples

			a(3) = 5 since 3^3 is the 5th 3-almost-prime: 8,12,18,20,27,....., A014612.
		

Crossrefs

Programs

  • Mathematica
    AlmostPrimePi[k_Integer /; k > 1, n_] := Module[{a, i}, a[0] = 1; Sum[PrimePi[n/Times @@ Prime[Array[a, k - 1]]] - a[k - 1] + 1, Evaluate[Sequence @@ Table[{a[i], a[i - 1], PrimePi[(n/Times @@ Prime[Array[a, i - 1]])^(1/(k - i + 1))]}, {i, k - 1}]]]]; (* Eric W. Weisstein, Feb 07 2006 *)
    Table[ AlmostPrimePi[n, 3^n], {n, 2, 37}] (* Robert G. Wilson v, Feb 09 2006 *)
  • PARI
    a(n)=sum(i=1,3^n,if(bigomega(i)-n,0,1))
    
  • PARI
    { appi(k,n,m=2) = local(r=0);
    if(k==0,return(1));
    if(k==1,return(primepi(n)));
    forprime(p=m, floor(sqrtn(n,k)+1e-20),
    r+=appi(k-1,n\p,p)-(k==2)*(primepi(p)-1));
    r }
    { appi3(k,n) = appi(k,n) - if(k>=1,appi(k-1,n\3)) }
    a=1; for(n=1,50, k=ceil(n*log(5/3)/log(5/2)); a+=appi3(n-k,3^n\2^k); print1(a,", "))
    \\ Max Alekseyev, Jan 06 2008
    
  • Python
    from math import isqrt, prod
    from sympy import primerange, integer_nthroot, primepi
    def A078843(n):
        def almostprimepi(n,k):
            def g(x,a,b,c,m): yield from (((d,) for d in enumerate(primerange(b,isqrt(x//c)+1),a)) if m==2 else (((a2,b2),)+d for a2,b2 in enumerate(primerange(b,integer_nthroot(x//c,m)[0]+1),a) for d in g(x,a2,b2,c*b2,m-1)))
            return int(sum(primepi(n//prod(c[1] for c in a))-a[-1][0] for a in g(n,0,1,1,k)) if k>1 else primepi(n))
        return almostprimepi(3**n,n) if n else 1 # Chai Wah Wu, Sep 01 2024

Formula

a(n) = a(n-1) + appi3(n-k, floor(3^n/2^k)), where k = ceiling(n*c) with c = log(5/3)/log(5/2) = 0.55749295065024006729857073190835923443... and appi3(k,n) is the number of k-almost primes not divisible by 3 and not exceeding n. - Max Alekseyev, Jan 06 2008

Extensions

a(14)-a(37) from Robert G. Wilson v, Feb 09 2006

A078844 Where 5^n occurs in n-almost-primes, starting at a(0)=1.

Original entry on oeis.org

1, 3, 9, 30, 90, 269, 788, 2249, 6340, 17526, 47911, 129639, 348251, 929714, 2469499, 6532869, 17219031, 45246630, 118572805, 309998131, 808746993, 2105893899, 5474080107, 14207001052, 36818679828, 95292132897, 246327403310
Offset: 0

Views

Author

Benoit Cloitre and Paul D. Hanna, Dec 10 2002

Keywords

Comments

A k-almost-prime is a positive integer that has exactly k prime factors, counted with multiplicity.

Examples

			a(2) = 9 since 5^2 is the 9th 2-almost-prime: {4,6,9,10,14,15,21,22,25,...}.
		

Crossrefs

Programs

  • Mathematica
    l = Table[0, {30}]; e = 0; Do[f = Plus @@ Last /@ FactorInteger[n]; l[[f+1]]++; If[n == 5^e, Print[l[[f+1]]]; e++ ], {n, 1, 5^10}] (* Ryan Propper, Aug 08 2005 *)
    AlmostPrimePi[k_Integer, n_] := Module[{a, i}, a[0] = 1; If[k == 1, PrimePi[n], Sum[ PrimePi[n/Times @@ Prime[Array[a, k - 1]]] - a[k - 1] + 1, Evaluate[ Sequence @@ Table[{a[i], a[i - 1], PrimePi[(n/Times @@ Prime[Array[a, i - 1]])^(1/(k - i + 1))]}, {i, k - 1}]]]]]; (* Eric W. Weisstein, Feb 07 2006 *)
    Join[{1},Table[ AlmostPrimePi[n, 5^n], {n, 1, 25}]] (* Robert G. Wilson v, Feb 10 2006 *)
  • Python
    from math import isqrt, prod
    from sympy import primerange, integer_nthroot, primepi
    def almostprimepi(n, k):
        if k==0: return int(n>=1)
        def g(x, a, b, c, m): yield from (((d, ) for d in enumerate(primerange(b, isqrt(x//c)+1), a)) if m==2 else (((a2, b2), )+d for a2, b2 in enumerate(primerange(b, integer_nthroot(x//c, m)[0]+1), a) for d in g(x, a2, b2, c*b2, m-1)))
        return int(sum(primepi(n//prod(c[1] for c in a))-a[-1][0] for a in g(n, 0, 1, 1, k)) if k>1 else primepi(n))
    def A078844(n): return almostprimepi(5**n, n) if n else 1 # Chai Wah Wu, Nov 07 2024

Extensions

a(8)-a(10) from Ryan Propper, Aug 08 2005
a(11)-a(25) from Robert G. Wilson v, Feb 10 2006
a(26) from Donovan Johnson, Sep 27 2010

A078846 Where 11^n occurs in n-almost-primes, starting at a(0)=1.

Original entry on oeis.org

1, 5, 40, 328, 2556, 18452, 126096, 827901, 5276913, 32887213, 201443165, 1217389949, 7279826998, 43168558912, 254258462459, 1489291941733, 8683388113017, 50433408838966
Offset: 0

Views

Author

Benoit Cloitre and Paul D. Hanna, Dec 10 2002

Keywords

Comments

A k-almost-prime is a positive integer that has exactly k prime factors, counted with multiplicity.

Examples

			a(2) = 40 since 11^2 is the 40th 2-almost-prime: A001358(40) = 121.
		

Crossrefs

Programs

  • Mathematica
    AlmostPrimePi[k_Integer /; k > 1, n_] := Module[{a, i}, a[0] = 1; Sum[PrimePi[n/Times @@ Prime[Array[a, k - 1]]] - a[k - 1] + 1, Evaluate[Sequence @@ Table[{a[i], a[i - 1], PrimePi[(n/Times @@ Prime[Array[a, i - 1]])^(1/(k - i + 1))]}, {i, k - 1}]]]]; (* Eric W. Weisstein, Feb 07 2006 *)
    Table[ AlmostPrimePi[n, 11^n], {n, 2, 11}] (* Robert G. Wilson v, Feb 09 2006 *)
  • PARI
    almost_prime_count(N, k) = if(k==1, return(primepi(N))); (f(m, p, k, j=0) = my(c=0, s=sqrtnint(N\m, k)); if(k==2, forprime(q=p, s, c += primepi(N\(m*q))-j; j += 1), forprime(q=p, s, c += f(m*q, q, k-1, j); j += 1)); c); f(1, 2, k);
    a(n) = if(n == 0, 1, almost_prime_count(11^n, n)); \\ Daniel Suteu, Jul 10 2023
    
  • Python
    from math import isqrt, prod
    from sympy import primerange, integer_nthroot, primepi
    def A078846(n):
        def almostprimepi(n, k):
            def g(x, a, b, c, m): yield from (((d, ) for d in enumerate(primerange(b, isqrt(x//c)+1), a)) if m==2 else (((a2, b2), )+d for a2, b2 in enumerate(primerange(b, integer_nthroot(x//c, m)[0]+1), a) for d in g(x, a2, b2, c*b2, m-1)))
            return int(sum(primepi(n//prod(c[1] for c in a))-a[-1][0] for a in g(n, 0, 1, 1, k)) if k>1 else primepi(n))
        return almostprimepi(11**n, n) if n else 1 # Chai Wah Wu, Sep 01 2024

Extensions

a(6)-a(11) from Robert G. Wilson v, Feb 09 2006
a(12)-a(15) from Donovan Johnson, Sep 27 2010
a(16)-a(17) from Daniel Suteu, Jul 10 2023

A116430 The number of n-almost primes less than or equal to 10^n, starting with a(0)=1.

Original entry on oeis.org

1, 4, 34, 247, 1712, 11185, 68963, 409849, 2367507, 13377156, 74342563, 407818620, 2214357712, 11926066887, 63809981451, 339576381990, 1799025041767, 9494920297227, 49950199374227, 262036734664892
Offset: 0

Views

Author

Robert G. Wilson v, Feb 10 2006, Jun 01 2006

Keywords

Comments

If instead we asked for those less than or equal to 2^n, then the sequence is A000012.

Crossrefs

Programs

  • Mathematica
    AlmostPrimePi[k_Integer, n_] := Module[{a, i}, a[0] = 1; If[k == 1, PrimePi[n], Sum[PrimePi[n/Times @@ Prime[Array[a, k - 1]]] - a[k - 1] + 1, Evaluate[ Sequence @@ Table[{a[i], a[i - 1], PrimePi[(n/Times @@ Prime[Array[a, i - 1]])^(1/(k - i + 1))]}, {i, k - 1}]]]]]; (* Eric W. Weisstein, Feb 07 2006 *)
    Table[ AlmostPrimePi[n, 10^n], {n, 0, 13}]
  • PARI
    almost_prime_count(N, k) = if(k==1, return(primepi(N))); (f(m, p, k, j=0) = my(c=0, s=sqrtnint(N\m, k)); if(k==2, forprime(q=p, s, c += primepi(N\(m*q))-j; j += 1), forprime(q=p, s, c += f(m*q, q, k-1, j); j += 1)); c); f(1, 2, k);
    a(n) = if(n == 0, 1, almost_prime_count(10^n, n)); \\ Daniel Suteu, Jul 10 2023
    
  • Python
    from math import prod, isqrt
    from sympy import primerange, integer_nthroot, primepi
    def A116430(n):
        if n<=1: return 3*n+1
        def g(x,a,b,c,m): yield from (((d,) for d in enumerate(primerange(b,isqrt(x//c)+1),a)) if m==2 else (((a2,b2),)+d for a2,b2 in enumerate(primerange(b,integer_nthroot(x//c,m)[0]+1),a) for d in g(x,a2,b2,c*b2,m-1)))
        return int(sum(primepi(10**n//prod(c[1] for c in a))-a[-1][0] for a in g(10**n,0,1,1,n))) # Chai Wah Wu, Aug 23 2024

Extensions

Edited by N. J. A. Sloane, Aug 08 2008 at the suggestion of R. J. Mathar
a(15)-a(16) from Donovan Johnson, Oct 01 2010
a(17)-a(19) from Daniel Suteu, Jul 10 2023

A078842 Sums of the antidiagonals of the table of k-almost primes (A078840).

Original entry on oeis.org

1, 2, 7, 19, 44, 95, 195, 395, 794, 1583, 3172, 6334, 12665, 25313, 50596, 101180, 202326, 404635, 809227, 1618410, 3236766, 6473474, 12946903, 25893723, 51787365, 103574668, 207149213, 414298342, 828596584, 1657193052, 3314385970
Offset: 0

Views

Author

Benoit Cloitre and Paul D. Hanna, Dec 11 2002

Keywords

Comments

A k-almost prime is a positive integer that has exactly k prime factors counted with multiplicity.

Examples

			a(3) = 19 = 5 (3rd prime) + 6 (2nd 2-almost prime) + 8 (first 3-almost prime).
		

Crossrefs

Programs

  • Mathematica
    f[n_] := Plus @@ Last /@ FactorInteger@n; t = Table[{}, {40}]; Do[a = f[n]; AppendTo[t[[a]], n]; t[[a]] = Take[t[[a]], 10], {n, 2, 148*10^8}]; Plus @@@ Table[t[[n - k + 1, k]], {n, 30}, {k, n, 1, -1}] (* Or *)
    AlmostPrimePi[k_Integer, n_] := Module[{a, i}, a[0] = 1; If[k == 1, PrimePi[n], Sum[PrimePi[n/Times @@ Prime[ Array[a, k - 1]]] - a[k - 1] + 1, Evaluate[ Sequence @@ Table[{a[i], a[i - 1], PrimePi[(n/Times @@ Prime[Array[a, i - 1]])^(1/(k - i + 1))]}, {i, k - 1}]] ]]]; (* Eric W. Weisstein Feb 07 2006 *)
    AlmostPrime[k_, n_] := Block[{e = Floor[Log[2, n]+k], a, b}, a = 2^e; Do[b = 2^p; While[ AlmostPrimePi[k, a] < n, a = a + b]; a = a - b/2, {p, e, 0, -1}]; a + b/2]; Table[ Sum[ AlmostPrime[k, n - k + 1], {k, n}], {n, 150}] (* Robert G. Wilson v, Feb 11 2006 *)

Formula

a(n) = Sum_{i=0..n-1} A078840(i+1, n-i).

Extensions

a(12)-a(30) from Robert G. Wilson v, Feb 11 2006

A116426 The number of n-almost primes less than or equal to 4^n, starting with a(0)=1.

Original entry on oeis.org

1, 2, 6, 13, 34, 77, 177, 406, 887, 1962, 4225, 9094, 19482, 41414, 87706, 184976, 389357, 816193, 1708412, 3566209, 7431153, 15457234, 32098652, 66560309, 137830562, 285062028, 588871107, 1215176367, 2505048537, 5159228725
Offset: 0

Views

Author

Robert G. Wilson v, Feb 10 2006

Keywords

Crossrefs

Programs

  • Mathematica
    AlmostPrimePi[k_Integer, n_] := Module[{a, i}, a[0] = 1; If[k == 1, PrimePi[n], Sum[PrimePi[n/Times @@ Prime[ Array[a, k - 1]]] - a[k - 1] + 1, Evaluate[ Sequence @@ Table[{a[i], a[i - 1], PrimePi[(n/Times @@ Prime[Array[a, i - 1]])^(1/(k - i + 1))]}, {i, k - 1}]]]]]; (* Eric W. Weisstein, Feb 07 2006 *)
    Join[{1},Table[AlmostPrimePi[n, 4^n], {n, 29}]]
  • Python
    from math import isqrt, prod
    from sympy import primerange, integer_nthroot, primepi
    def A116426(n):
        if n<=1: return n+1
        def g(x,a,b,c,m): yield from (((d,) for d in enumerate(primerange(b,isqrt(x//c)+1),a)) if m==2 else (((a2,b2),)+d for a2,b2 in enumerate(primerange(b,integer_nthroot(x//c,m)[0]+1),a) for d in g(x,a2,b2,c*b2,m-1)))
        return int(sum(primepi((1<<(n<<1))//prod(c[1] for c in a))-a[-1][0] for a in g(1<<(n<<1),0,1,1,n))) # Chai Wah Wu, Oct 02 2024

A116427 The number of n-almost primes less than or equal to 6^n, starting with a(0)=1.

Original entry on oeis.org

1, 3, 13, 50, 200, 726, 2613, 9061, 30779, 102637, 338230, 1102674, 3566001, 11455355, 36597558, 116395587, 368749900, 1164407829, 3666312894, 11515047829, 36085395700, 112857846859, 352329509934, 1098136237818
Offset: 0

Views

Author

Robert G. Wilson v, Feb 10 2006

Keywords

Crossrefs

Programs

  • Mathematica
    AlmostPrimePi[k_Integer, n_] := Module[{a, i}, a[0] = 1; If[k == 1, PrimePi[n], Sum[PrimePi[n/Times @@ Prime[ Array[a, k - 1]]] - a[k - 1] + 1, Evaluate[ Sequence @@ Table[{a[i], a[i - 1], PrimePi[(n/Times @@ Prime[Array[a, i - 1]])^(1/(k - i + 1))]}, {i, k - 1}]] ]]]; (* Eric W. Weisstein, Feb 07 2006 *)
    Join[{1},Table[AlmostPrimePi[n, 6^n], {n, 21}]]

Extensions

a(22)-a(23) from Donovan Johnson, Oct 01 2010

A116428 The number of n-almost primes less than or equal to 8^n, starting with a(0)=1.

Original entry on oeis.org

1, 4, 22, 125, 669, 3410, 16677, 78369, 359110, 1612613, 7133274, 31185350, 135062165, 580556958, 2480278767, 10542976739, 44626102826, 188215850830, 791374442571, 3318478309647, 13882441625034, 57952990683107
Offset: 0

Views

Author

Robert G. Wilson v, Feb 14 2006

Keywords

Crossrefs

Programs

  • Mathematica
    AlmostPrimePi[k_Integer, n_] := Module[{a, i}, a[0] = 1; If[k == 1, PrimePi[n], Sum[PrimePi[n/Times @@ Prime[ Array[a, k - 1]]] - a[k - 1] + 1, Evaluate[ Sequence @@ Table[{a[i], a[i - 1], PrimePi[(n/Times @@ Prime[Array[a, i - 1]])^(1/(k - i + 1))]}, {i, k - 1}]]]]];
    Table[ AlmostPrimePi[n, 8^n], {n, 14}] (* Eric W. Weisstein, Feb 07 2006 *)
  • PARI
    almost_prime_count(N, k) = if(k==1, return(primepi(N))); (f(m, p, k, j=0) = my(c=0, s=sqrtnint(N\m, k)); if(k==2, forprime(q=p, s, c += primepi(N\(m*q))-j; j += 1), forprime(q=p, s, c += f(m*q, q, k-1, j); j += 1)); c); f(1, 2, k);
    a(n) = if(n == 0, 1, almost_prime_count(8^n, n)); \\ Daniel Suteu, Jul 10 2023

Extensions

a(15)-a(18) from Donovan Johnson, Oct 01 2010
a(19)-a(21) from Daniel Suteu, Jul 10 2023

A116429 The number of n-almost primes less than or equal to 9^n, starting with a(0)=1.

Original entry on oeis.org

1, 4, 26, 181, 1095, 6416, 35285, 187929, 973404, 4934952, 24628655, 121375817, 592337729, 2868086641, 13798982719, 66043675287, 314715355786, 1494166794434, 7071357084444, 33374079939405
Offset: 0

Views

Author

Robert G. Wilson v, Feb 10 2006

Keywords

Crossrefs

Programs

  • Mathematica
    AlmostPrimePi[k_Integer, n_] := Module[{a, i}, a[0] = 1; If[k == 1, PrimePi[n], Sum[PrimePi[n/Times @@ Prime[ Array[a, k - 1]]] - a[k - 1] + 1, Evaluate[ Sequence @@ Table[{a[i], a[i - 1], PrimePi[(n/Times @@ Prime[Array[a, i - 1]])^(1/(k - i + 1))]}, {i, k - 1}]] ]]]; (* Eric W. Weisstein, Feb 07 2006 *)
    Table[ AlmostPrimePi[n, 9^n], {n, 13}]
  • PARI
    almost_prime_count(N, k) = if(k==1, return(primepi(N))); (f(m, p, k, j=0) = my(c=0, s=sqrtnint(N\m, k)); if(k==2, forprime(q=p, s, c += primepi(N\(m*q))-j; j += 1), forprime(q=p, s, c += f(m*q, q, k-1, j); j += 1)); c); f(1, 2, k);
    a(n) = if(n == 0, 1, almost_prime_count(9^n, n)); \\ Daniel Suteu, Jul 10 2023

Extensions

a(14)-a(16) from Donovan Johnson, Oct 01 2010
a(16) corrected and a(17)-a(19) from Daniel Suteu, Jul 10 2023

A116431 The number of n-almost primes less than or equal to 12^n, starting with a(0)=1.

Original entry on oeis.org

1, 5, 48, 434, 3695, 29165, 218283, 1569995, 10950776, 74621972, 499495257, 3297443264, 21533211312, 139411685398, 896352197825, 5730605551626, 36465861350230
Offset: 0

Views

Author

Robert G. Wilson v, Feb 10 2006

Keywords

Crossrefs

Programs

  • Mathematica
    AlmostPrimePi[k_Integer, n_] := Module[{a, i}, a[0] = 1; If[k == 1, PrimePi[n], Sum[PrimePi[n/Times @@ Prime[ Array[a, k - 1]]] - a[k - 1] + 1, Evaluate[ Sequence @@ Table[{a[i], a[i - 1], PrimePi[(n/Times @@ Prime[Array[a, i - 1]])^(1/(k - i + 1))]}, {i, k - 1}]] ]]]; (* Eric W. Weisstein, Feb 07 2006 *)
    Table[ AlmostPrimePi[n, 12^n], {n, 12}]
  • PARI
    almost_prime_count(N, k) = if(k==1, return(primepi(N))); (f(m, p, k, j=0) = my(c=0, s=sqrtnint(N\m, k)); if(k==2, forprime(q=p, s, c += primepi(N\(m*q))-j; j += 1), forprime(q=p, s, c += f(m*q, q, k-1, j); j += 1)); c); f(1, 2, k);
    a(n) = if(n == 0, 1, almost_prime_count(12^n, n)); \\ Daniel Suteu, Jul 10 2023
    
  • Python
    from math import isqrt, prod
    from sympy import primerange, integer_nthroot, primepi
    def A116431(n):
        if n<=1: return 4*n+1
        def g(x,a,b,c,m): yield from (((d,) for d in enumerate(primerange(b,isqrt(x//c)+1),a)) if m==2 else (((a2,b2),)+d for a2,b2 in enumerate(primerange(b,integer_nthroot(x//c,m)[0]+1),a) for d in g(x,a2,b2,c*b2,m-1)))
        return int(sum(primepi(12**n//prod(c[1] for c in a))-a[-1][0] for a in g(12**n,0,1,1,n))) # Chai Wah Wu, Sep 28 2024

Extensions

a(13)-a(14) from Donovan Johnson, Oct 01 2010
a(15)-a(16) from Daniel Suteu, Jul 10 2023
Showing 1-10 of 13 results. Next