A078843
Where 3^n occurs in n-almost primes, starting at a(0)=1.
Original entry on oeis.org
1, 2, 3, 5, 8, 14, 23, 39, 64, 103, 169, 269, 427, 676, 1065, 1669, 2628, 4104, 6414, 10023, 15608, 24281, 37733, 58503, 90616, 140187, 216625, 334527, 516126, 795632, 1225641, 1886570, 2901796, 4460359, 6851532, 10518476, 16138642, 24748319
Offset: 0
a(3) = 5 since 3^3 is the 5th 3-almost-prime: 8,12,18,20,27,....., A014612.
-
AlmostPrimePi[k_Integer /; k > 1, n_] := Module[{a, i}, a[0] = 1; Sum[PrimePi[n/Times @@ Prime[Array[a, k - 1]]] - a[k - 1] + 1, Evaluate[Sequence @@ Table[{a[i], a[i - 1], PrimePi[(n/Times @@ Prime[Array[a, i - 1]])^(1/(k - i + 1))]}, {i, k - 1}]]]]; (* Eric W. Weisstein, Feb 07 2006 *)
Table[ AlmostPrimePi[n, 3^n], {n, 2, 37}] (* Robert G. Wilson v, Feb 09 2006 *)
-
a(n)=sum(i=1,3^n,if(bigomega(i)-n,0,1))
-
{ appi(k,n,m=2) = local(r=0);
if(k==0,return(1));
if(k==1,return(primepi(n)));
forprime(p=m, floor(sqrtn(n,k)+1e-20),
r+=appi(k-1,n\p,p)-(k==2)*(primepi(p)-1));
r }
{ appi3(k,n) = appi(k,n) - if(k>=1,appi(k-1,n\3)) }
a=1; for(n=1,50, k=ceil(n*log(5/3)/log(5/2)); a+=appi3(n-k,3^n\2^k); print1(a,", "))
\\ Max Alekseyev, Jan 06 2008
-
from math import isqrt, prod
from sympy import primerange, integer_nthroot, primepi
def A078843(n):
def almostprimepi(n,k):
def g(x,a,b,c,m): yield from (((d,) for d in enumerate(primerange(b,isqrt(x//c)+1),a)) if m==2 else (((a2,b2),)+d for a2,b2 in enumerate(primerange(b,integer_nthroot(x//c,m)[0]+1),a) for d in g(x,a2,b2,c*b2,m-1)))
return int(sum(primepi(n//prod(c[1] for c in a))-a[-1][0] for a in g(n,0,1,1,k)) if k>1 else primepi(n))
return almostprimepi(3**n,n) if n else 1 # Chai Wah Wu, Sep 01 2024
A078844
Where 5^n occurs in n-almost-primes, starting at a(0)=1.
Original entry on oeis.org
1, 3, 9, 30, 90, 269, 788, 2249, 6340, 17526, 47911, 129639, 348251, 929714, 2469499, 6532869, 17219031, 45246630, 118572805, 309998131, 808746993, 2105893899, 5474080107, 14207001052, 36818679828, 95292132897, 246327403310
Offset: 0
a(2) = 9 since 5^2 is the 9th 2-almost-prime: {4,6,9,10,14,15,21,22,25,...}.
-
l = Table[0, {30}]; e = 0; Do[f = Plus @@ Last /@ FactorInteger[n]; l[[f+1]]++; If[n == 5^e, Print[l[[f+1]]]; e++ ], {n, 1, 5^10}] (* Ryan Propper, Aug 08 2005 *)
AlmostPrimePi[k_Integer, n_] := Module[{a, i}, a[0] = 1; If[k == 1, PrimePi[n], Sum[ PrimePi[n/Times @@ Prime[Array[a, k - 1]]] - a[k - 1] + 1, Evaluate[ Sequence @@ Table[{a[i], a[i - 1], PrimePi[(n/Times @@ Prime[Array[a, i - 1]])^(1/(k - i + 1))]}, {i, k - 1}]]]]]; (* Eric W. Weisstein, Feb 07 2006 *)
Join[{1},Table[ AlmostPrimePi[n, 5^n], {n, 1, 25}]] (* Robert G. Wilson v, Feb 10 2006 *)
-
from math import isqrt, prod
from sympy import primerange, integer_nthroot, primepi
def almostprimepi(n, k):
if k==0: return int(n>=1)
def g(x, a, b, c, m): yield from (((d, ) for d in enumerate(primerange(b, isqrt(x//c)+1), a)) if m==2 else (((a2, b2), )+d for a2, b2 in enumerate(primerange(b, integer_nthroot(x//c, m)[0]+1), a) for d in g(x, a2, b2, c*b2, m-1)))
return int(sum(primepi(n//prod(c[1] for c in a))-a[-1][0] for a in g(n, 0, 1, 1, k)) if k>1 else primepi(n))
def A078844(n): return almostprimepi(5**n, n) if n else 1 # Chai Wah Wu, Nov 07 2024
A078846
Where 11^n occurs in n-almost-primes, starting at a(0)=1.
Original entry on oeis.org
1, 5, 40, 328, 2556, 18452, 126096, 827901, 5276913, 32887213, 201443165, 1217389949, 7279826998, 43168558912, 254258462459, 1489291941733, 8683388113017, 50433408838966
Offset: 0
a(2) = 40 since 11^2 is the 40th 2-almost-prime: A001358(40) = 121.
-
AlmostPrimePi[k_Integer /; k > 1, n_] := Module[{a, i}, a[0] = 1; Sum[PrimePi[n/Times @@ Prime[Array[a, k - 1]]] - a[k - 1] + 1, Evaluate[Sequence @@ Table[{a[i], a[i - 1], PrimePi[(n/Times @@ Prime[Array[a, i - 1]])^(1/(k - i + 1))]}, {i, k - 1}]]]]; (* Eric W. Weisstein, Feb 07 2006 *)
Table[ AlmostPrimePi[n, 11^n], {n, 2, 11}] (* Robert G. Wilson v, Feb 09 2006 *)
-
almost_prime_count(N, k) = if(k==1, return(primepi(N))); (f(m, p, k, j=0) = my(c=0, s=sqrtnint(N\m, k)); if(k==2, forprime(q=p, s, c += primepi(N\(m*q))-j; j += 1), forprime(q=p, s, c += f(m*q, q, k-1, j); j += 1)); c); f(1, 2, k);
a(n) = if(n == 0, 1, almost_prime_count(11^n, n)); \\ Daniel Suteu, Jul 10 2023
-
from math import isqrt, prod
from sympy import primerange, integer_nthroot, primepi
def A078846(n):
def almostprimepi(n, k):
def g(x, a, b, c, m): yield from (((d, ) for d in enumerate(primerange(b, isqrt(x//c)+1), a)) if m==2 else (((a2, b2), )+d for a2, b2 in enumerate(primerange(b, integer_nthroot(x//c, m)[0]+1), a) for d in g(x, a2, b2, c*b2, m-1)))
return int(sum(primepi(n//prod(c[1] for c in a))-a[-1][0] for a in g(n, 0, 1, 1, k)) if k>1 else primepi(n))
return almostprimepi(11**n, n) if n else 1 # Chai Wah Wu, Sep 01 2024
A116430
The number of n-almost primes less than or equal to 10^n, starting with a(0)=1.
Original entry on oeis.org
1, 4, 34, 247, 1712, 11185, 68963, 409849, 2367507, 13377156, 74342563, 407818620, 2214357712, 11926066887, 63809981451, 339576381990, 1799025041767, 9494920297227, 49950199374227, 262036734664892
Offset: 0
Cf.
A078840,
A078841,
A078842,
A116432,
A078843,
A116426,
A078844,
A116427,
A078845,
A116428,
A116429,
A116430,
A078846,
A116431.
-
AlmostPrimePi[k_Integer, n_] := Module[{a, i}, a[0] = 1; If[k == 1, PrimePi[n], Sum[PrimePi[n/Times @@ Prime[Array[a, k - 1]]] - a[k - 1] + 1, Evaluate[ Sequence @@ Table[{a[i], a[i - 1], PrimePi[(n/Times @@ Prime[Array[a, i - 1]])^(1/(k - i + 1))]}, {i, k - 1}]]]]]; (* Eric W. Weisstein, Feb 07 2006 *)
Table[ AlmostPrimePi[n, 10^n], {n, 0, 13}]
-
almost_prime_count(N, k) = if(k==1, return(primepi(N))); (f(m, p, k, j=0) = my(c=0, s=sqrtnint(N\m, k)); if(k==2, forprime(q=p, s, c += primepi(N\(m*q))-j; j += 1), forprime(q=p, s, c += f(m*q, q, k-1, j); j += 1)); c); f(1, 2, k);
a(n) = if(n == 0, 1, almost_prime_count(10^n, n)); \\ Daniel Suteu, Jul 10 2023
-
from math import prod, isqrt
from sympy import primerange, integer_nthroot, primepi
def A116430(n):
if n<=1: return 3*n+1
def g(x,a,b,c,m): yield from (((d,) for d in enumerate(primerange(b,isqrt(x//c)+1),a)) if m==2 else (((a2,b2),)+d for a2,b2 in enumerate(primerange(b,integer_nthroot(x//c,m)[0]+1),a) for d in g(x,a2,b2,c*b2,m-1)))
return int(sum(primepi(10**n//prod(c[1] for c in a))-a[-1][0] for a in g(10**n,0,1,1,n))) # Chai Wah Wu, Aug 23 2024
A078842
Sums of the antidiagonals of the table of k-almost primes (A078840).
Original entry on oeis.org
1, 2, 7, 19, 44, 95, 195, 395, 794, 1583, 3172, 6334, 12665, 25313, 50596, 101180, 202326, 404635, 809227, 1618410, 3236766, 6473474, 12946903, 25893723, 51787365, 103574668, 207149213, 414298342, 828596584, 1657193052, 3314385970
Offset: 0
a(3) = 19 = 5 (3rd prime) + 6 (2nd 2-almost prime) + 8 (first 3-almost prime).
-
f[n_] := Plus @@ Last /@ FactorInteger@n; t = Table[{}, {40}]; Do[a = f[n]; AppendTo[t[[a]], n]; t[[a]] = Take[t[[a]], 10], {n, 2, 148*10^8}]; Plus @@@ Table[t[[n - k + 1, k]], {n, 30}, {k, n, 1, -1}] (* Or *)
AlmostPrimePi[k_Integer, n_] := Module[{a, i}, a[0] = 1; If[k == 1, PrimePi[n], Sum[PrimePi[n/Times @@ Prime[ Array[a, k - 1]]] - a[k - 1] + 1, Evaluate[ Sequence @@ Table[{a[i], a[i - 1], PrimePi[(n/Times @@ Prime[Array[a, i - 1]])^(1/(k - i + 1))]}, {i, k - 1}]] ]]]; (* Eric W. Weisstein Feb 07 2006 *)
AlmostPrime[k_, n_] := Block[{e = Floor[Log[2, n]+k], a, b}, a = 2^e; Do[b = 2^p; While[ AlmostPrimePi[k, a] < n, a = a + b]; a = a - b/2, {p, e, 0, -1}]; a + b/2]; Table[ Sum[ AlmostPrime[k, n - k + 1], {k, n}], {n, 150}] (* Robert G. Wilson v, Feb 11 2006 *)
A116426
The number of n-almost primes less than or equal to 4^n, starting with a(0)=1.
Original entry on oeis.org
1, 2, 6, 13, 34, 77, 177, 406, 887, 1962, 4225, 9094, 19482, 41414, 87706, 184976, 389357, 816193, 1708412, 3566209, 7431153, 15457234, 32098652, 66560309, 137830562, 285062028, 588871107, 1215176367, 2505048537, 5159228725
Offset: 0
Cf.
A078840,
A078841,
A078842,
A116432,
A078843,
A116426,
A078844,
A116427,
A078845,
A116428,
A116429,
A116430,
A078846,
A116431.
-
AlmostPrimePi[k_Integer, n_] := Module[{a, i}, a[0] = 1; If[k == 1, PrimePi[n], Sum[PrimePi[n/Times @@ Prime[ Array[a, k - 1]]] - a[k - 1] + 1, Evaluate[ Sequence @@ Table[{a[i], a[i - 1], PrimePi[(n/Times @@ Prime[Array[a, i - 1]])^(1/(k - i + 1))]}, {i, k - 1}]]]]]; (* Eric W. Weisstein, Feb 07 2006 *)
Join[{1},Table[AlmostPrimePi[n, 4^n], {n, 29}]]
-
from math import isqrt, prod
from sympy import primerange, integer_nthroot, primepi
def A116426(n):
if n<=1: return n+1
def g(x,a,b,c,m): yield from (((d,) for d in enumerate(primerange(b,isqrt(x//c)+1),a)) if m==2 else (((a2,b2),)+d for a2,b2 in enumerate(primerange(b,integer_nthroot(x//c,m)[0]+1),a) for d in g(x,a2,b2,c*b2,m-1)))
return int(sum(primepi((1<<(n<<1))//prod(c[1] for c in a))-a[-1][0] for a in g(1<<(n<<1),0,1,1,n))) # Chai Wah Wu, Oct 02 2024
A116427
The number of n-almost primes less than or equal to 6^n, starting with a(0)=1.
Original entry on oeis.org
1, 3, 13, 50, 200, 726, 2613, 9061, 30779, 102637, 338230, 1102674, 3566001, 11455355, 36597558, 116395587, 368749900, 1164407829, 3666312894, 11515047829, 36085395700, 112857846859, 352329509934, 1098136237818
Offset: 0
Cf.
A078840,
A078841,
A078842,
A116432,
A078843,
A116426,
A078844,
A116427,
A078845,
A116428,
A116429,
A116430,
A078846,
A116431.
-
AlmostPrimePi[k_Integer, n_] := Module[{a, i}, a[0] = 1; If[k == 1, PrimePi[n], Sum[PrimePi[n/Times @@ Prime[ Array[a, k - 1]]] - a[k - 1] + 1, Evaluate[ Sequence @@ Table[{a[i], a[i - 1], PrimePi[(n/Times @@ Prime[Array[a, i - 1]])^(1/(k - i + 1))]}, {i, k - 1}]] ]]]; (* Eric W. Weisstein, Feb 07 2006 *)
Join[{1},Table[AlmostPrimePi[n, 6^n], {n, 21}]]
A116428
The number of n-almost primes less than or equal to 8^n, starting with a(0)=1.
Original entry on oeis.org
1, 4, 22, 125, 669, 3410, 16677, 78369, 359110, 1612613, 7133274, 31185350, 135062165, 580556958, 2480278767, 10542976739, 44626102826, 188215850830, 791374442571, 3318478309647, 13882441625034, 57952990683107
Offset: 0
Cf.
A078840,
A078841,
A078842,
A116432,
A078843,
A116426,
A078844,
A116427,
A078845,
A116428,
A116429,
A116430,
A078846,
A116431.
-
AlmostPrimePi[k_Integer, n_] := Module[{a, i}, a[0] = 1; If[k == 1, PrimePi[n], Sum[PrimePi[n/Times @@ Prime[ Array[a, k - 1]]] - a[k - 1] + 1, Evaluate[ Sequence @@ Table[{a[i], a[i - 1], PrimePi[(n/Times @@ Prime[Array[a, i - 1]])^(1/(k - i + 1))]}, {i, k - 1}]]]]];
Table[ AlmostPrimePi[n, 8^n], {n, 14}] (* Eric W. Weisstein, Feb 07 2006 *)
-
almost_prime_count(N, k) = if(k==1, return(primepi(N))); (f(m, p, k, j=0) = my(c=0, s=sqrtnint(N\m, k)); if(k==2, forprime(q=p, s, c += primepi(N\(m*q))-j; j += 1), forprime(q=p, s, c += f(m*q, q, k-1, j); j += 1)); c); f(1, 2, k);
a(n) = if(n == 0, 1, almost_prime_count(8^n, n)); \\ Daniel Suteu, Jul 10 2023
A116429
The number of n-almost primes less than or equal to 9^n, starting with a(0)=1.
Original entry on oeis.org
1, 4, 26, 181, 1095, 6416, 35285, 187929, 973404, 4934952, 24628655, 121375817, 592337729, 2868086641, 13798982719, 66043675287, 314715355786, 1494166794434, 7071357084444, 33374079939405
Offset: 0
Cf.
A078840,
A078841,
A078842,
A116432,
A078843,
A116426,
A078844,
A116427,
A078845,
A116428,
A116429,
A116430,
A078846,
A116431.
-
AlmostPrimePi[k_Integer, n_] := Module[{a, i}, a[0] = 1; If[k == 1, PrimePi[n], Sum[PrimePi[n/Times @@ Prime[ Array[a, k - 1]]] - a[k - 1] + 1, Evaluate[ Sequence @@ Table[{a[i], a[i - 1], PrimePi[(n/Times @@ Prime[Array[a, i - 1]])^(1/(k - i + 1))]}, {i, k - 1}]] ]]]; (* Eric W. Weisstein, Feb 07 2006 *)
Table[ AlmostPrimePi[n, 9^n], {n, 13}]
-
almost_prime_count(N, k) = if(k==1, return(primepi(N))); (f(m, p, k, j=0) = my(c=0, s=sqrtnint(N\m, k)); if(k==2, forprime(q=p, s, c += primepi(N\(m*q))-j; j += 1), forprime(q=p, s, c += f(m*q, q, k-1, j); j += 1)); c); f(1, 2, k);
a(n) = if(n == 0, 1, almost_prime_count(9^n, n)); \\ Daniel Suteu, Jul 10 2023
a(16) corrected and a(17)-a(19) from
Daniel Suteu, Jul 10 2023
A116431
The number of n-almost primes less than or equal to 12^n, starting with a(0)=1.
Original entry on oeis.org
1, 5, 48, 434, 3695, 29165, 218283, 1569995, 10950776, 74621972, 499495257, 3297443264, 21533211312, 139411685398, 896352197825, 5730605551626, 36465861350230
Offset: 0
Cf.
A078840,
A078841,
A078842,
A116432,
A078843,
A116426,
A078844,
A116427,
A078845,
A116428,
A116429,
A116430,
A078846,
A116431.
-
AlmostPrimePi[k_Integer, n_] := Module[{a, i}, a[0] = 1; If[k == 1, PrimePi[n], Sum[PrimePi[n/Times @@ Prime[ Array[a, k - 1]]] - a[k - 1] + 1, Evaluate[ Sequence @@ Table[{a[i], a[i - 1], PrimePi[(n/Times @@ Prime[Array[a, i - 1]])^(1/(k - i + 1))]}, {i, k - 1}]] ]]]; (* Eric W. Weisstein, Feb 07 2006 *)
Table[ AlmostPrimePi[n, 12^n], {n, 12}]
-
almost_prime_count(N, k) = if(k==1, return(primepi(N))); (f(m, p, k, j=0) = my(c=0, s=sqrtnint(N\m, k)); if(k==2, forprime(q=p, s, c += primepi(N\(m*q))-j; j += 1), forprime(q=p, s, c += f(m*q, q, k-1, j); j += 1)); c); f(1, 2, k);
a(n) = if(n == 0, 1, almost_prime_count(12^n, n)); \\ Daniel Suteu, Jul 10 2023
-
from math import isqrt, prod
from sympy import primerange, integer_nthroot, primepi
def A116431(n):
if n<=1: return 4*n+1
def g(x,a,b,c,m): yield from (((d,) for d in enumerate(primerange(b,isqrt(x//c)+1),a)) if m==2 else (((a2,b2),)+d for a2,b2 in enumerate(primerange(b,integer_nthroot(x//c,m)[0]+1),a) for d in g(x,a2,b2,c*b2,m-1)))
return int(sum(primepi(12**n//prod(c[1] for c in a))-a[-1][0] for a in g(12**n,0,1,1,n))) # Chai Wah Wu, Sep 28 2024
Showing 1-10 of 13 results.
Comments