cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A079130 Primes such that iterated sum-of-digits (A038194) is a square.

Original entry on oeis.org

13, 19, 31, 37, 67, 73, 103, 109, 127, 139, 157, 163, 181, 193, 199, 211, 229, 271, 283, 307, 337, 373, 379, 397, 409, 433, 463, 487, 499, 523, 541, 571, 577, 607, 613, 631, 643, 661, 733, 739, 751, 757, 769, 787, 811, 823, 829, 859, 877, 883, 919, 937, 967
Offset: 1

Views

Author

Klaus Brockhaus, Dec 28 2002

Keywords

Comments

Primes which are 1 or 4 mod 9. - Charles R Greathouse IV, Sep 04 2014

Crossrefs

Programs

  • Maple
    select(isprime,map(t -> (9*t+1,9*t+4),[$1..1000]));  # Robert Israel, Sep 04 2014
  • Mathematica
    sQ[n_]:=MemberQ[{1,4,9},NestWhile[Total[IntegerDigits[#]]&,n,#>9&]]; Select[Prime[Range[300]],sQ] (* Harvey P. Dale, Dec 06 2012 *)
  • PARI
    forprime(p=2,1000,if(issquare(p%9),print1(p,",")))

Formula

a(n) ~ 3n log n. - Charles R Greathouse IV, Sep 04 2014

A079131 Primes such that iterated sum-of-digits (A038194) is odd.

Original entry on oeis.org

3, 5, 7, 19, 23, 37, 41, 43, 59, 61, 73, 79, 97, 109, 113, 127, 131, 149, 151, 163, 167, 181, 199, 223, 239, 241, 257, 271, 277, 293, 307, 311, 313, 331, 347, 349, 367, 379, 383, 397, 401, 419, 421, 433, 439, 457, 487, 491, 509, 523, 541, 547, 563, 577, 599
Offset: 1

Views

Author

Klaus Brockhaus, Dec 28 2002

Keywords

Comments

Subsequence of primes of A187318. - Michel Marcus, Jun 08 2015
Primes congruent to 1, 3, 5, 7 mod 18. - Robert Israel, Jun 08 2015

Crossrefs

Programs

  • Magma
    [p: p in PrimesUpTo(600) | p mod 18 in [1,3,5,7]]; // Vincenzo Librandi, Jun 07 2015
    
  • Magma
    [a: n in [0..1000] | IsPrime(a) where a is Floor(9*n/5)]; // Vincenzo Librandi, Jun 08 2015
  • Maple
    select(isprime, [3, seq(seq(i*18+j, j=[1,5,7]),i=0..100)]); # Robert Israel, Jun 08 2015
  • Mathematica
    Select[Prime[Range[120]], OddQ[Mod[#, 9]] &] (* Bruno Berselli, Aug 31 2012 *)
  • PARI
    forprime(p=2,600,if((p%9)%2==1,print1(p,",")))
    
Showing 1-2 of 2 results.