A079262 Octanacci numbers: a(0)=a(1)=...=a(6)=0, a(7)=1; for n >= 8, a(n) = Sum_{i=1..8} a(n-i).
0, 0, 0, 0, 0, 0, 0, 1, 1, 2, 4, 8, 16, 32, 64, 128, 255, 509, 1016, 2028, 4048, 8080, 16128, 32192, 64256, 128257, 256005, 510994, 1019960, 2035872, 4063664, 8111200, 16190208, 32316160, 64504063, 128752121, 256993248, 512966536, 1023897200, 2043730736
Offset: 0
Examples
a(16) = 1 + 2 + 4 + 8 + 16 + 32 + 64 + 128 = 255.
Links
- T. D. Noe, Table of n, a(n) for n=0..207
- Martin Burtscher, Igor Szczyrba, and Rafał Szczyrba, Analytic Representations of the n-anacci Constants and Generalizations Thereof, Journal of Integer Sequences, Vol. 18 (2015), Article 15.4.5.
- Spiros D. Dafnis, Andreas N. Philippou, and Ioannis E. Livieris, An Alternating Sum of Fibonacci and Lucas Numbers of Order k, Mathematics (2020) Vol. 9, 1487.
- Taras Goy and Mark Shattuck, Some Toeplitz-Hessenberg Determinant Identities for the Tetranacci Numbers, J. Int. Seq., Vol. 23 (2020), Article 20.6.8.
- Tian-Xiao He, Impulse Response Sequences and Construction of Number Sequence Identities, J. Int. Seq. 16 (2013) #13.8.2.
- F. T. Howard and Curtis Cooper, Some identities for r-Fibonacci numbers, Fibonacci Quart. 49 (2011), no. 3, 231-243.
- Omar Khadir, László Németh, and László Szalay, Tiling of dominoes with ranked colors, Results in Math. (2024) Vol. 79, Art. No. 253. See p. 2.
- László Németh and László Szalay, Explicit solution of system of two higher-order recurrences, arXiv:2408.12196 [math.NT], 2024. See p. 10.
- Tony D. Noe and Jonathan Vos Post, Primes in Fibonacci n-step and Lucas n-step Sequences, J. of Integer Sequences, Vol. 8 (2005), Article 05.4.4.
- Fred J. Rispoli, Fibonacci Polytopes and Their Applications, Fib. Q., 43,3 (2005), 227-233.
- Kai Wang, Identities for generalized enneanacci numbers, Generalized Fibonacci Sequences (2020).
- Index entries for linear recurrences with constant coefficients, signature (1,1,1,1,1,1,1,1).
Crossrefs
Programs
-
Maple
for j from 0 to 6 do a[j]:=0 od: a[7]:=1: for n from 8 to 45 do a[n]:=sum(a[n-i],i=1..8) od:seq(a[n],n=0..45); # Emeric Deutsch, Apr 16 2005
-
Mathematica
LinearRecurrence[{1, 1, 1, 1, 1, 1, 1, 1}, {0, 0, 0, 0, 0, 0, 0, 1}, 50] (* Vladimir Joseph Stephan Orlovsky, May 25 2011 *) With[{nn=8},LinearRecurrence[Table[1,{nn}],Join[Table[0,{nn-1}],{1}],50]] (* Harvey P. Dale, Aug 17 2013 *)
Formula
G.f.: x^7/(1 - x - x^2 - x^3 - x^4 - x^5 - x^6 - x^7 - x^8). - Emeric Deutsch, Apr 16 2005
a(1)..a(9) = 1, 1, 2, 4, 8, 16, 32, 64, 128. a(10) and following are given by 63*2^(n-8)+(1/2+sqrt(5/4))^(n-6)/sqrt(5)-(1/2-sqrt(5/4))^(n-6)/sqrt(5). Offset 10. a(10)=255. - Al Hakanson (hawkuu(AT)gmail.com), Feb 14 2009
Another form of the g.f.: f(z) = (z^7 - z^8)/(1 - 2*z + z^9), then a(n) = Sum_{i=0..floor((n-7)/9)} (-1)^i*binomial(n-7-8*i,i)*2^(n-7-9*i) - Sum_{i=0..floor((n-8)/9)} (-1)^i*binomial(n-8-8*i,i)*2^(n-8-9*i) with Sum_{i=m..n} alpha(i) = 0 for m>n. - Richard Choulet, Feb 22 2010
Sum_{k=0..7*n} a(k+b)*A171890(n,k) = a(8*n+b), b>=0.
a(n) = 2*a(n-1) - a(n-9). - Vincenzo Librandi, Dec 20 2010
Extensions
Corrected by Joao B. Oliveira (oliveira(AT)inf.pucrs.br), Nov 25 2004
Comments