0, 1, 0, 1, 1, 0, 1, 1, 1, 0, 1, 2, 1, 1, 0, 1, 3, 2, 1, 1, 0, 1, 5, 4, 2, 1, 1, 0, 1, 8, 7, 4, 2, 1, 1, 0, 1, 13, 13, 8, 4, 2, 1, 1, 0, 1, 21, 24, 15, 8, 4, 2, 1, 1, 0, 1, 34, 44, 29, 16, 8, 4, 2, 1, 1, 0, 1, 55, 81, 56, 31, 16, 8, 4, 2, 1, 1, 0, 1, 89, 149, 108, 61, 32, 16, 8, 4, 2, 1, 1, 0
Offset: 0
From _Peter Luschny_, Apr 03 2021: (Start)
Array begins:
n = 0 1 2 3 4 5 6 7 8 9 10
-------------------------------------------------------------
[k=1, mononacci ] 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, ...
[k=2, Fibonacci ] 0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, ...
[k=3, tribonacci] 0, 1, 1, 2, 4, 7, 13, 24, 44, 81, 149, ...
[k=4, tetranacci] 0, 1, 1, 2, 4, 8, 15, 29, 56, 108, 208, ...
[k=5, pentanacci] 0, 1, 1, 2, 4, 8, 16, 31, 61, 120, 236, ...
[k=6] 0, 1, 1, 2, 4, 8, 16, 32, 63, 125, 248, ...
[k=7] 0, 1, 1, 2, 4, 8, 16, 32, 64, 127, 253, ...
[k=8] 0, 1, 1, 2, 4, 8, 16, 32, 64, 128, 255, ...
[k=9] 0, 1, 1, 2, 4, 8, 16, 32, 64, 128, 256, ...
Note that the first parameter in F(k, n) refers to rows, and the second parameter refers to columns. This is always the case. Only the usual naming convention for the indices is not adhered to because it is common to call the row sequences k-bonacci numbers. (End)
.
From _Peter Luschny_, Aug 12 2015: (Start)
As a triangle counting compositions of n with largest part k:
[n\k]| [0][1] [2] [3] [4][5][6][7][8][9]
[0] | [0]
[1] | [0, 1]
[2] | [0, 1, 1]
[3] | [0, 1, 1, 1]
[4] | [0, 1, 2, 1, 1]
[5] | [0, 1, 3, 2, 1, 1]
[6] | [0, 1, 5, 4, 2, 1, 1]
[7] | [0, 1, 8, 7, 4, 2, 1, 1]
[8] | [0, 1, 13, 13, 8, 4, 2, 1, 1]
[9] | [0, 1, 21, 24, 15, 8, 4, 2, 1, 1]
For example for n=7 and k=3 we have the 7 compositions [3, 3, 1], [3, 2, 2], [3, 2, 1, 1], [3, 1, 3], [3, 1, 2, 1], [3, 1, 1, 2], [3, 1, 1, 1, 1]. (End)
Comments