cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A079262 Octanacci numbers: a(0)=a(1)=...=a(6)=0, a(7)=1; for n >= 8, a(n) = Sum_{i=1..8} a(n-i).

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 0, 1, 1, 2, 4, 8, 16, 32, 64, 128, 255, 509, 1016, 2028, 4048, 8080, 16128, 32192, 64256, 128257, 256005, 510994, 1019960, 2035872, 4063664, 8111200, 16190208, 32316160, 64504063, 128752121, 256993248, 512966536, 1023897200, 2043730736
Offset: 0

Views

Author

Michael Joseph Halm, Feb 04 2003

Keywords

Comments

a(n+7) is the number of compositions of n into parts <= 8. - Joerg Arndt, Sep 24 2020

Examples

			a(16) = 1 + 2 + 4 + 8 + 16 + 32 + 64 + 128 = 255.
		

Crossrefs

Row 8 of arrays A048887 and A092921 (k-generalized Fibonacci numbers).
Cf. A253706, A253705. Primes and indices of primes in this sequence.

Programs

  • Maple
    for j from 0 to 6 do a[j]:=0 od: a[7]:=1: for n from 8 to 45 do a[n]:=sum(a[n-i],i=1..8) od:seq(a[n],n=0..45); # Emeric Deutsch, Apr 16 2005
  • Mathematica
    LinearRecurrence[{1, 1, 1, 1, 1, 1, 1, 1}, {0, 0, 0, 0, 0, 0, 0, 1}, 50] (* Vladimir Joseph Stephan Orlovsky, May 25 2011 *)
    With[{nn=8},LinearRecurrence[Table[1,{nn}],Join[Table[0,{nn-1}],{1}],50]] (* Harvey P. Dale, Aug 17 2013 *)

Formula

G.f.: x^7/(1 - x - x^2 - x^3 - x^4 - x^5 - x^6 - x^7 - x^8). - Emeric Deutsch, Apr 16 2005
a(1)..a(9) = 1, 1, 2, 4, 8, 16, 32, 64, 128. a(10) and following are given by 63*2^(n-8)+(1/2+sqrt(5/4))^(n-6)/sqrt(5)-(1/2-sqrt(5/4))^(n-6)/sqrt(5). Offset 10. a(10)=255. - Al Hakanson (hawkuu(AT)gmail.com), Feb 14 2009
Another form of the g.f.: f(z) = (z^7 - z^8)/(1 - 2*z + z^9), then a(n) = Sum_{i=0..floor((n-7)/9)} (-1)^i*binomial(n-7-8*i,i)*2^(n-7-9*i) - Sum_{i=0..floor((n-8)/9)} (-1)^i*binomial(n-8-8*i,i)*2^(n-8-9*i) with Sum_{i=m..n} alpha(i) = 0 for m>n. - Richard Choulet, Feb 22 2010
Sum_{k=0..7*n} a(k+b)*A171890(n,k) = a(8*n+b), b>=0.
a(n) = 2*a(n-1) - a(n-9). - Vincenzo Librandi, Dec 20 2010

Extensions

Corrected by Joao B. Oliveira (oliveira(AT)inf.pucrs.br), Nov 25 2004

A254413 Primes in the 8th-order Fibonacci numbers A123526.

Original entry on oeis.org

29, 113, 449, 226241, 14307889, 113783041, 1820091580429249, 233322881089059894782836851617, 29566627412209231076314948970028097, 59243719929958343565697204780596496129, 7507351981539044730893385057192143660843521
Offset: 1

Views

Author

Robert Price, Jan 30 2015

Keywords

Comments

a(12) is too large to display here. It has 46 digits and is the 158th term in A123526.

Crossrefs

Programs

  • Mathematica
    a={1,1,1,1,1,1,1,1}; step=8; lst={}; For[n=step+1,n<=1000,n++, sum=Plus@@a; If[PrimeQ[sum], AppendTo[lst,sum]]; a=RotateLeft[a]; a[[step]]=sum]; lst
    Select[With[{lr=PadRight[{},8,1]},LinearRecurrence[lr,lr,200]],PrimeQ] (* Harvey P. Dale, Dec 03 2022 *)

A253706 Primes in the 8th-order Fibonacci numbers A079262.

Original entry on oeis.org

2, 509, 128257, 133294824621464999938178340471931877, 4596852049500861351052672455121859744010232939954169259264638023409631672658340253083284317818242062413
Offset: 1

Views

Author

Robert Price, Jan 09 2015

Keywords

Comments

a(6) is too large to display here. It has 395 digits and is the 1322nd term in A079262.

Crossrefs

Programs

  • Mathematica
    a={0,0,0,0,0,0,0,1}; step=8; lst={}; For[n=step,n<=1000,n++, sum=Plus@@a; If[PrimeQ[sum], AppendTo[lst,sum]]; a=RotateLeft[a]; a[[step]]=sum]; lst
  • PARI
    lista(nn) = {gf = x^7/(1-x-x^2-x^3-x^4-x^5-x^6-x^7-x^8); for (n=0, nn, if (isprime(p=polcoeff(gf+O(x^(n+1)), n)), print1(p, ", ")););} \\ Michel Marcus, Jan 12 2015
Showing 1-3 of 3 results.