A079272 a(n) = ((2n+1)*3^n - 1)/2.
4, 22, 94, 364, 1336, 4738, 16402, 55768, 186988, 620014, 2037190, 6643012, 21523360, 69353050, 222408058, 710270896, 2259952852, 7167279046, 22664098606, 71479080220, 224897593864, 706073841202, 2212364702434, 6919523643784, 21605859540796, 67359444450718
Offset: 1
Examples
For instance, the 4 fragmented chains of original length a(4) = 364 into . 1 + 9 + 1 + + 243 27 + + 1 + 81 + 1 . when swapped with identical fragments owned by the creditor, enable the sequential payment, a link-cost at a time, for an expense up to 364 link-costs.
Links
- G. C. Greubel, Table of n, a(n) for n = 1..1000
- Index entries for linear recurrences with constant coefficients, signature (7,-15,9).
Programs
-
Magma
[((2*n+1)*3^n - 1)/2: n in [1..25]]; // Vincenzo Librandi, Jul 07 2018
-
Maple
a:=n->sum (3^j*n^binomial(j,n),j=0..n): seq(a(n),n=1..25); # Zerinvary Lajos, Apr 18 2009
-
Mathematica
Rest@ CoefficientList[Series[2x(2-3x)/((1-x)(1-3x)^2), {x, 0, 25}], x] (* Michael De Vlieger, Jul 06 2018 *)
-
PARI
vector(25, n, ((2*n+1)*3^n - 1)/2) \\ G. C. Greubel, Apr 14 2019
-
Sage
[((2*n+1)*3^n - 1)/2 for n in (1..25)] # G. C. Greubel, Apr 14 2019
Formula
From Colin Barker, Jul 28 2012: (Start)
a(n) = 7*a(n-1) - 15*a(n-2) + 9*a(n-3).
G.f.: 2*x*(2-3*x)/((1-x)*(1-3*x)^2). (End)
a(n) = f^n(n) with f(x) = 3*x+1 = A016777(x). - Glen Gilchrist, Apr 10 2019
E.g.f.: ((1+3*x)*sinh(x) + 3*x*cosh(x))*exp(2*x). - G. C. Greubel, Apr 14 2019
Extensions
More terms from Michel ten Voorde, Jun 20 2003
Comments