cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A079275 Number of divisors of n that are semiprimes with distinct factors.

Original entry on oeis.org

0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 1, 0, 1, 1, 0, 0, 1, 0, 1, 1, 1, 0, 1, 0, 1, 0, 1, 0, 3, 0, 0, 1, 1, 1, 1, 0, 1, 1, 1, 0, 3, 0, 1, 1, 1, 0, 1, 0, 1, 1, 1, 0, 1, 1, 1, 1, 1, 0, 3, 0, 1, 1, 0, 1, 3, 0, 1, 1, 3, 0, 1, 0, 1, 1, 1, 1, 3, 0, 1, 0, 1, 0, 3, 1, 1, 1, 1, 0, 3, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 0, 3, 0, 1, 3
Offset: 1

Views

Author

Reinhard Zumkeller, Feb 07 2003

Keywords

Comments

Number of pairs of prime factors of n, (p,q), such that p < q. For example, the prime factors of 30 are 2, 3 and 5, so we have the ordered pairs (2,3), (2,5) and (3,5). - Wesley Ivan Hurt, Sep 14 2020
Inverse Möbius transform of A280710(n). - Wesley Ivan Hurt, Jul 06 2025

Crossrefs

Programs

  • Maple
    A079275 := proc(n)
        local a,d ;
        a := 0 ;
        for d in numtheory[divisors](n) do
            if A001221(d) = 2 and A001222(d) = 2 then
                a := a+1 ;
            end if;
        end do:
        a ;
    end proc:
    seq(A079275(n),n=1..40) ; # R. J. Mathar, Jan 18 2021
  • Mathematica
    f[n_]:=Module[{c=PrimeNu[n]},(c(c-1))/2]; Array[f,110] (* Harvey P. Dale, Oct 05 2011 *)
  • PARI
    a(n) = sumdiv(n, d, (bigomega(d)==2) && (omega(d)==2)); \\ Michel Marcus, Sep 15 2020
    
  • PARI
    a(n) = binomial(omega(n),2) \\ David A. Corneth, Sep 15 2020

Formula

a(A000961(n)) = 0; a(A007774(n)) = 1; a(A033992(n)) = 3; a(A033993(n)) = 6.
a(n) = omega(n)*(omega(n)-1)/2, where omega(n) is the number of distinct prime factors of n.
a(n) = Sum_{p|n, q|n, p,q prime, pWesley Ivan Hurt, Sep 14 2020
a(n) = Sum_{d|n} A280710(d). - Wesley Ivan Hurt, Jul 06 2025