A079362 Sequence of sums of alternating powers of 3.
1, 4, 5, 14, 17, 44, 53, 134, 161, 404, 485, 1214, 1457, 3644, 4373, 10934, 13121, 32804, 39365, 98414, 118097, 295244, 354293, 885734, 1062881, 2657204, 3188645, 7971614, 9565937, 23914844, 28697813, 71744534, 86093441, 215233604
Offset: 1
Links
- G. C. Greubel, Table of n, a(n) for n = 1..1000
- Index entries for linear recurrences with constant coefficients, signature (1,3,-3).
Programs
-
GAP
a:=[1,4,5];; for n in [4..30] do a[n]:=a[n-1]+3*a[n-2]-3*a[n-3]; od; a; # G. C. Greubel, Aug 07 2019
-
Magma
I:=[1,4,5]; [n le 3 select I[n] else Self(n-1) +3*Self(n-2) -3*Self(n-3): n in [1..40]]; // G. C. Greubel, Aug 07 2019
-
Maple
a[1]:=1:a[2]:=4:for n from 3 to 100 do a[n]:=3*a[n-2]+2 od: seq(a[n], n=1..33); # Zerinvary Lajos, Mar 17 2008
-
Mathematica
LinearRecurrence[{1,3,-3},{1,4,5},40] (* Harvey P. Dale, Oct 18 2016 *)
-
PARI
a(n)=if(n<1,0,1+sum(k=2,n,3^((k\2)-(k%2))))
-
PARI
a(n)=if(n<0,0,(5/3-3*n%2)*2^ceil(n/2)-1)
-
Sage
@CachedFunction def a(n): if (n==0): return 1 elif (1<=n<=2): return n+3 else: return a(n-1) + 3*a(n-2) - 3*a(n-3) [a(n) for n in (0..40)] # G. C. Greubel, Aug 07 2019
Formula
G.f.: x*(1+3*x-2*x^2)/((1-x)*(1-3*x^2)). - Michael Somos, Feb 18 2003
For n >= 1, a(2n-1) = (2/3)*3^n - 1, a(2n) = (5/3)*3^n - 1. - Benoit Cloitre, Feb 16 2003