A079451 Largest prime dividing the n-th Lucas number (A000032); 1 when no such prime exists.
2, 1, 3, 2, 7, 11, 3, 29, 47, 19, 41, 199, 23, 521, 281, 31, 2207, 3571, 107, 9349, 2161, 211, 307, 461, 1103, 151, 90481, 5779, 14503, 19489, 2521, 3010349, 4481, 9901, 63443, 911, 103681, 54018521, 29134601, 859, 3041, 370248451, 1427, 144481, 967, 541, 275449
Offset: 0
Keywords
Links
- Amiram Eldar, Table of n, a(n) for n = 0..1000 (using Blair Kelly's data)
- J. Brillhart, P. L. Montgomery and R. D. Silverman, Tables of Fibonacci and Lucas factorizations, Math. Comp. 50 (1988), 251-260, S1-S15. Math. Rev. 89h:11002.
- Blair Kelly, Factorizations of first 1000 Lucas numbers.
Crossrefs
Programs
-
Magma
[2,1] cat [Maximum(PrimeDivisors(Lucas(n))): n in [2..60]]; // Vincenzo Librandi, Dec 26 2016
-
Maple
A079451 := proc(n) A006530(A000032(n)) ; end proc: seq(A079451(n),n=0..30) ; # R. J. Mathar, Oct 26 2013 # second Maple program: a:= n-> max(ifactors((<<1|1>, <1|0>>^n. <<2, -1>>)[1, 1])[2][..., 1][], 1): seq(a(n), n=0..46); # Alois P. Heinz, Aug 04 2025
-
Mathematica
Join[{2,1},f[n_]:=(FactorInteger@LucasL@n)[[-1,1]];Array[f,60,2]] (* Vincenzo Librandi, Dec 26 2016 *)
-
PARI
a(n) = my(f = factor(fibonacci(n+1)+fibonacci(n-1))); if (om = #f~, f[om, 1], 1); \\ Michel Marcus, Oct 26 2013
-
PARI
A079451(n) = A006530(A000032(n)) \\ M. F. Hasler, Apr 10 2025
-
Python
def A079451(n): return A006530(A000032(n)) # M. F. Hasler, Apr 10 2025
Formula
Extensions
More terms from Michel Marcus, Oct 26 2013
Modified b-file and scripts so that a(1)=1. - David Radcliffe, Aug 03 2025