cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A079025 Triangular array read by rows: column sums of frequency distributions associated with number of divisors of least prime signatures.

Original entry on oeis.org

1, 1, 1, 2, 3, 2, 3, 6, 6, 3, 5, 12, 16, 12, 5, 7, 20, 32, 32, 20, 7, 11, 35, 65, 79, 65, 35, 11, 15, 54, 113, 160, 160, 113, 54, 15, 22, 86, 199, 318, 371, 318, 199, 86, 22, 30, 128, 323, 573, 756, 756, 573, 323, 128, 30, 42, 192, 523, 1013, 1485, 1683, 1485, 1013, 523, 192, 42
Offset: 0

Views

Author

Alford Arnold, Feb 01 2003

Keywords

Comments

Row sums of the triangular table is sequence A074141. The left column and the main diagonal are the partition numbers A000041.
T(n,k) is the total number of divisors d of m (counted with multiplicity), such that the prime signature of d is a partition of k and m runs through the set of least numbers whose prime signature is a partition of n. - Alois P. Heinz, Aug 23 2019

Examples

			The seven least integers associated with prime signatures 5, 41, 32, 311, 221, 2111, 11111 (partitions of 5) are 32, 48, 72, 120, 180, 420 and 2310 (see A036035).  The corresponding numbers of divisors 6, 10, 12, 16, 18, 24 and 32 (see A074139) can be refined with the following frequency distributions D(p,s), which counts how many divisors of the entry of A036035 have a sum of prime exponents s, 0<=s<=n:
  1  1  1  1  1 1
  1  2  2  2  2 1
  1  2  3  3  2 1
  1  3  4  4  3 1
  1  3  5  5  3 1
  1  4  7  7  4 1
  1  5 10 10  5 1 , therefore the column sums are:
  7 20 32 32 20 7 , which is row 5 of the triangle.
Triangle T(n,k) begins:
    1
    1   1
    2   3    2
    3   6    6    3
    5  12   16   12    5
    7  20   32   32   20     7
   11  35   65   79   65    35    11
   15  54  113  160  160   113    54    15
   22  86  199  318  371   318   199    86    22
   30 128  323  573  756   756   573   323   128   30
   42 192  523 1013 1485  1683  1485  1013   523  192   42
   56 275  803 1683 2701  3405  3405  2701  1683  803  275   56
   77 399 1237 2776 4822  6662  7413  6662  4822 2776 1237  399  77
  101 556 1826 4366 8144 12205 14901 14901 12205 8144 4366 1826 556 101
  ...
		

Crossrefs

Row sums give A074141.
T(2n,n) gives A309915.

Programs

  • Maple
    A079025 := proc(n,k)
        local psig ,d,a;
        a := 0 ;
        for psig in A036035_row(n) do
            for d in numtheory[divisors](psig) do
                if numtheory[bigomega](d) = k then
                    a := a+1 ;
                end if:
            end do:
        end do:
        a ;
    end proc:
    for n from 0 to 13 do
        for k from 0 to n do
            printf("%d ",A079025(n,k)) ;
        end do:
        printf("\n") ;
    end do: # R. J. Mathar, Aug 28 2018
    # second Maple program:
    b:= proc(n, i) option remember; expand(`if`(n=0 or i=1, (x+1)^n,
          b(n, i-1) +factor((x^(i+1)-1)/(x-1))*b(n-i, min(n-i, i))))
        end:
    T:= n-> (p-> seq(coeff(p, x, i), i=0..n))(b(n$2)):
    seq(T(n), n=0..12);  # Alois P. Heinz, Aug 22 2019
  • Mathematica
    b[n_, i_] := b[n, i] = Expand[If[n == 0 || i == 1, (x + 1)^n, b[n, i - 1] + Factor[(x^(i + 1) - 1)/(x - 1)]*b[n - i, Min[n - i, i]]]];
    T[n_] := Function[p, Table[Coefficient[p, x, i], {i, 0, n}]][b[n, n]];
    Table[T[n], {n, 0, 12}] // Flatten (* Jean-François Alcover, Dec 06 2019, after Alois P. Heinz *)

A181555 a(n) = A002110(n)^n.

Original entry on oeis.org

1, 2, 36, 27000, 1944810000, 65774855015100000, 733384949590939374729000000, 9037114296609938214167920266348510000000, 78354300210436852307898467208663359164858967744100000000
Offset: 0

Views

Author

Matthew Vandermast, Oct 31 2010

Keywords

Comments

For n>0, a(n)= first counting number whose prime signature consists of n repeated n times (cf. A002024). Subsequence of A025487.

Examples

			a(4) = 1944810000 = 210^4 = 2^4 * 3^4 * 5^4 * 7^4.
		

Crossrefs

A061742(n) = A002110(n)^2. See also A006939, A066120, A166475, A167448.
A000005(a(n)) = A000169(n). The divisors of a(n) appear as the first A000169(n) terms of A178479, with A178479(A000169(n)) = a(n).
A071207(n, k) gives the number of divisors of n with (n-k) distinct prime factors, A181567(n, k) gives the number of divisors of n with k prime factors counted with multiplicity.

Programs

  • Mathematica
    a[0] = 1; a[n_] := Product[Prime[i], {i, 1, n}]^n; Array[a, 9, 0] (* Amiram Eldar, Aug 08 2019 *)

Formula

a(n) = A079474(2n,n). - Alois P. Heinz, Aug 22 2019

A281890 Square array A(n,k): number of integers having prime(n) as k-th factor when written as product of primes in nondecreasing order, in any interval of primorial(n)^k positive integers.

Original entry on oeis.org

1, 1, 1, 1, 5, 2, 1, 19, 62, 8, 1, 65, 1322, 1976, 48, 1, 211, 24182, 318392, 140496, 480, 1, 665, 408842, 42729464, 260656752, 19373280, 5760, 1, 2059, 6609302, 5208402488, 395975417424, 485262187680, 4125121920, 92160, 1, 6305, 103999562, 600582229496
Offset: 1

Views

Author

Peter Munn, Feb 08 2017

Keywords

Comments

Square array read by descending antidiagonals: A(n,k) with rows n >= 1, columns k >= 1. Primorial(n) = A002110(n): product of first n primes.
Visualize the prime factorizations of the positive integers as a table with row headings giving each successive integer, and the primes of which the row heading is the product listed across the columns in nondecreasing order, repeated when necessary. Except for 1, which lacks prime factors, column 1 has the row heading's least prime factor, column 2 has a value for composite numbers but is blank for primes, and so on. This sequence measures precisely how frequently the various primes occur in each column. This is possible because any given prime occurs cyclically in any given column, for the reason following.
The occurrence pattern of up to k factors of prime(n) in such prime factorizations has a fundamental period over the positive integers of prime(n)^k. The least common period for up to k factors of each of the first n primes is Primorial(n)^k, and this covers everything that can affect the occurrence of prime(n) in the least k factors. Thus prime(n) is k-th least prime factor of integer m if and only if it is k-th least prime factor of m+Primorial(n)^k.
Intermediate values in the calculation of this sequence appear in A281891.
A(n,1) = A005867(n-1) in accordance with the comment on A005867 dated Jul 16 2006.
A(2,k) = A001047(k) = 3^k - 2^k.

Examples

			Prime(2)=3 occurs as second least factor five times in the prime factorizations of every interval of 36=Primorial(2)^2 positive integers. See A014673. So A(2,2) = 5.
		

Crossrefs

A079474 re-read as a square array gives values of primorial(n)^k = A002110(n)^k.
The values in the body of the factorization table described in the author's comments are in the irregular array A027746.

Formula

A(n,k) = primorial(n-1) * A281891(n,k-1) - prime(n)^(k-1) * A281891(n-1,k).

A281891 Square array A(n,k): number of integers having k or more factors less than prime(n+1) in their prime factorization, within any interval of primorial(n)^k positive integers.

Original entry on oeis.org

1, 0, 1, 0, 1, 1, 0, 1, 4, 1, 0, 1, 14, 22, 1, 0, 1, 46, 412, 162, 1, 0, 1, 146, 7072, 22164, 1830, 1, 0, 1, 454, 115432, 2744088, 2822340, 24270, 1, 0, 1, 1394, 1827592, 319881696, 3913037880, 496348740, 418350, 1, 0, 1, 4246, 28390552, 35924741232, 5079363328560, 9082206410040, 147569907780, 8040810, 1
Offset: 0

Views

Author

Peter Munn, Feb 08 2017

Keywords

Comments

Square array read by descending antidiagonals; A(n,k) with rows n >= 0, columns k >= 0. Prime factors are counted with multiplicity. Primorial(n) = A002110(n): product of first n primes.
Visualize the prime factorizations of the positive integers as a table with row headings giving each successive integer, and the primes of which the row heading is the product listed across the columns in nondecreasing order, repeated when necessary. Except for 1, which lacks prime factors, column 1 has the row heading's least prime factor, column 2 has a value for composite numbers but is blank for primes, and so on. This sequence measures precisely how frequently values up to and including the various primes occur in each column. This is possible because any given prime occurs cyclically in any given column, for the reason following.
The occurrence pattern of up to k factors of prime(n) in such prime factorizations has a fundamental period over the positive integers of prime(n)^k. The least common period for up to k factors of each of the first n primes is primorial(n)^k, and this covers everything that can affect the occurrence of prime(n) in the least k factors. Thus prime(n) is k-th least prime factor of integer m if and only if it is k-th least prime factor of m + primorial(n)^k.
Intermediate values in the calculation of this sequence appear in A281890.
If n > 0, A(n,1) = A053144(n) in accordance with the comment on A053144 dated Apr 08 2010.
A(2,k) = A027649(k) = 2*(3^k) - 2^k.

Examples

			The table starts:
   1     0         0             0             0           0        0 ...
   1     1         1             1             1           1        1 ...
   1     4        14            46           146         454     1394 ...
   1    22       412          7072        115432     1827592 28390552 ...
   1   162     22164       2744088     319881696 35924741232    ...
   1  1830   2822340    3913037880 5079363328560      ...
   1 24270 496348740 9082206410040       ...
   ...
Primes less than prime(2+1)=5 occur as second least factor 14 times in the prime factorizations of every interval of 36 = primorial(2)^2 positive integers (cf. A014673). Therefore, A(2,2) = 14.
		

Crossrefs

A079474 re-read as a square array gives values of primorial(n)^k = A002110(n)^k.
The values in the body of the factorization table described in the author's comments are in the irregular array A027746.
A096294 gives the equivalent array for integers expressed as a product of prime powers.

Formula

A(n,0) = 1 for n >= 0, A(0,k) = 0 for k >= 1.
A(n,k) = prime(n)^k * A(n-1,k) + A281890(n,k) for n >= 1, k >= 1.

Extensions

Edited by M. F. Hasler, Apr 14 2017

A342455 The fifth powers of primorials: a(n) = A002110(n)^5.

Original entry on oeis.org

1, 32, 7776, 24300000, 408410100000, 65774855015100000, 24421743243121524300000, 34675383095948798128025100000, 85859681408495723096004822084900000, 552622359415801587878908964592391520700000, 11334919554709059323420895730190266747414284300000, 324509123504618420438174660414872405442002404781629300000
Offset: 0

Views

Author

Antti Karttunen, Mar 12 2021

Keywords

Comments

The ratio G(n) = sigma(n) / (exp(gamma)*n*log(log(n))), where gamma is the Euler-Mascheroni constant (A001620), as applied to these numbers from a(1)=32 onward, develops as:
1: 0.8893323133
2: 0.7551575418
3: 0.7303870617
4: 0.7347890824
5: 0.7263701246
6: 0.7298051649
7: 0.7304358358
8: 0.7354921494
9: 0.7389343933
10: 0.7391912616
11: 0.7416291350
12: 0.7424159544
...
Notably, after its minimum at term a(5) = 65774855015100000, it starts increasing again, albeit rather slowly. At n=10000 the ratio is 0.8632750..., and at n=40000, it is 0.87545260... Question: Does this trend continue indefinitely? In contrast, for primorials, A002110, the ratio appears to be monotonically decreasing, see comments in A342000.

Crossrefs

Diagonal in A079474. After the initial term, also the leftmost branch in that subtree of A329886 whose root is 32.

Programs

  • Mathematica
    FoldList[Times, 1, Prime@ Range[11]]^5 (* Michael De Vlieger, Mar 14 2021 *)
  • PARI
    A342455(n) = prod(i=1,n,prime(i))^5;
    
  • Python
    from sympy.ntheory.generate import primorial
    def A342455(n): return primorial(n)**5 if n >= 1 else 1 # Chai Wah Wu, Mar 13 2021

Formula

a(n) = A000584(A002110(n)) = A002110(n)^5.
Showing 1-5 of 5 results.