A079501 Number of compositions of the integer n with strictly smallest part in the first position.
1, 1, 2, 2, 4, 5, 8, 12, 19, 28, 45, 70, 110, 173, 275, 436, 695, 1107, 1769, 2831, 4537, 7276, 11683, 18774, 30194, 48592, 78247, 126062, 203192, 327645, 528518, 852815, 1376491, 2222294, 3588628, 5796196, 9363458, 15128631, 24447014, 39510108
Offset: 1
Keywords
Examples
The a(9)=19 such compositions of 9 are [ 1] [ 1 2 2 2 2 ] [ 2] [ 1 2 2 4 ] [ 3] [ 1 2 3 3 ] [ 4] [ 1 2 4 2 ] [ 5] [ 1 2 6 ] [ 6] [ 1 3 2 3 ] [ 7] [ 1 3 3 2 ] [ 8] [ 1 3 5 ] [ 9] [ 1 4 2 2 ] [10] [ 1 4 4 ] [11] [ 1 5 3 ] [12] [ 1 6 2 ] [13] [ 1 8 ] [14] [ 2 3 4 ] [15] [ 2 4 3 ] [16] [ 2 7 ] [17] [ 3 6 ] [18] [ 4 5 ] [19] [ 9 ] - _Joerg Arndt_, Jan 01 2013
References
- Arnold Knopfmacher and Neville Robbins, Compositions with parts constrained by the leading summand, Ars Combin. 76 (2005), 287-295.
Links
- Alois P. Heinz, Table of n, a(n) for n = 1..1000
Crossrefs
Programs
-
Maple
b:= proc(n, s) option remember; `if`(n=0, 1, add( `if`(n-j>0 and n-j<=s, 0, b(n-j, s)), j=s+1..n)) end: a:= n-> 1 +add(b(n-j, j), j=1..n/2): seq(a(n), n=1..60); # Alois P. Heinz, Apr 29 2014
-
Mathematica
b[n_, s_] := b[n, s] = If[n == 0, 1, Sum[ If[n - j > 0 && n - j <= s, 0, b[n - j, s]], {j, s + 1, n}]]; a[n_] := 1 + Sum[b[n - j, j], {j, 1, n/2}]; Table[a[n], {n, 1, 60}] (* Jean-François Alcover, Jan 16 2015, after Alois P. Heinz *)
Formula
G.f.: Sum_{k>=1} (1-z)*z^k/(1-z-z^(k+1)).
G.f.: Sum_{k>=1} z^(2*k-1)/((1-z^k)*(1-z)^(k-1)), cf. A105039. - Vladeta Jovovic, Apr 05 2005
a(n) ~ 1/sqrt(5) * ((1+sqrt(5))/2)^(n-2). - Vaclav Kotesovec, May 01 2014
G.f.: Sum_{n>=1} q^n/(1-Sum_{k>=n+1} q^k). - Joerg Arndt, Jan 03 2024
Extensions
More terms from Benoit Cloitre, Jan 21 2003
Comments