A079505 The last number for which a determinant of base-n numbers is nonzero.
14, 25, 61, 121, 211, 337, 505, 721, 991, 1321, 1717, 2185, 2731, 3361, 4081, 4897, 5815, 6841, 7981, 9241, 10627, 12145, 13801, 15601, 17551, 19657, 21925, 24361, 26971, 29761, 32737, 35905, 39271, 42841, 46621, 50617, 54835, 59281, 63961, 68881
Offset: 2
Examples
a(3)=25 because the determinant sequence in base 3 is 1, 2, 2, -1, -1, 4, -2, -2, -2, 2, 0, 1, -1, 0, 1, -1, 0, -4, 4, 0, 2, -2, 0, 2, -2, 0, 0, 0, 0, 0, 0, 0, .... and Det[A_k]=0 for k > 25.
Links
- Muniru A Asiru, Table of n, a(n) for n = 2..5000
- Index entries for linear recurrences with constant coefficients, signature (4,-6,4,-1).
Crossrefs
Cf. A061600.
Programs
-
GAP
Concatenation([14], List([3..50], n -> n^3-n+1)); # G. C. Greubel, Jan 18 2019
-
Magma
[14] cat [n^3-n+1: n in [3..50]]; // Vincenzo Librandi, Dec 01 2018
-
Maple
seq(coeff(series(x^2*(7*x^4-29*x^3+45*x^2-31*x+14)/(x-1)^4,x,n+1), x, n), n = 2 .. 35); # Muniru A Asiru, Nov 30 2018
-
Mathematica
Table[ls = {}; Do[nt = Length[IntegerDigits[k, b]]; Ak = Table[IntegerDigits[k - i, b, nt], {i, 0, nt - 1}]; AppendTo[ls, Det[Ak]], {k, 1, b^4}]; Position[ls, _?(#!=0&)][[ -1, 1]], {b, 2, 10}] CoefficientList[Series[(7x^4 -29x^3 +45x^2 -31x +14)/(x-1)^4, {x, 0, 50}], x] (* Vincenzo Librandi, Dec 01 2018 *) LinearRecurrence[{4,-6,4,-1},{14,25,61,121,211},40] (* Harvey P. Dale, Feb 12 2023 *)
-
PARI
vector(50, n, n++; if(n==2, 14, n^3-n+1)) \\ G. C. Greubel, Jan 18 2019
-
Sage
[14] + [n^3-n+1 for n in (3..50)] # G. C. Greubel, Jan 18 2019
Formula
a(n) = n^3 - n + 1 (except for n=2, a(2)=14).
From Chai Wah Wu, Nov 30 2018: (Start)
a(n) = 4*a(n-1) - 6*a(n-2) + 4*a(n-3) - a(n-4) for n > 6.
G.f.: x^2*(7*x^4 - 29*x^3 + 45*x^2 - 31*x + 14)/(x - 1)^4. (End)
Extensions
Edited by T. D. Noe, Jun 24 2009
Comments