cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A079705 3p^2 where p runs through the primes.

Original entry on oeis.org

12, 27, 75, 147, 363, 507, 867, 1083, 1587, 2523, 2883, 4107, 5043, 5547, 6627, 8427, 10443, 11163, 13467, 15123, 15987, 18723, 20667, 23763, 28227, 30603, 31827, 34347, 35643, 38307, 48387, 51483, 56307, 57963, 66603, 68403, 73947, 79707, 83667, 89787, 96123
Offset: 1

Views

Author

Jon Perry, Jan 31 2003

Keywords

Examples

			For n = 2, 3*prime(2)^2 = 3*3^2 = 27.
		

Programs

  • Magma
    [3*p^2: p in PrimesUpTo(200)]; // Vincenzo Librandi, Mar 27 2014
    
  • Mathematica
    3 #^2 & /@ Prime[Range[40]]
    3 Prime[Range[30]]^2 (* Vincenzo Librandi, Mar 27 2014 *)
  • PARI
    forprime (p=2,100,print1(p^2*3, ", "))
    
  • PARI
    a(n) = 3*prime(n)^2; \\ Michel Marcus, Dec 27 2021
    
  • Python
    from sympy import primerange
    print([3*p**2 for p in primerange(1, 180)]) # Michael S. Branicky, Dec 27 2021

Formula

a(n) = 3*A001248(n) = A003415(A030078(n)). - Reinhard Zumkeller, Jun 26 2011

Extensions

More terms from Harvey P. Dale, Feb 13 2003
Offset corrected by Vincenzo Librandi, Mar 27 2014