cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A030078 Cubes of primes.

Original entry on oeis.org

8, 27, 125, 343, 1331, 2197, 4913, 6859, 12167, 24389, 29791, 50653, 68921, 79507, 103823, 148877, 205379, 226981, 300763, 357911, 389017, 493039, 571787, 704969, 912673, 1030301, 1092727, 1225043, 1295029, 1442897, 2048383, 2248091, 2571353, 2685619, 3307949
Offset: 1

Views

Author

Keywords

Comments

Numbers with exactly three factorizations: A001055(a(n)) = 3 (e.g., a(4) = 1*343 = 7*49 = 7*7*7). - Reinhard Zumkeller, Dec 29 2001
Intersection of A014612 and A000578. Intersection of A014612 and A030513. - Wesley Ivan Hurt, Sep 10 2013
Let r(n) = (a(n)-1)/(a(n)+1) if a(n) mod 4 = 1, (a(n)+1)/(a(n)-1) otherwise; then Product_{n>=1} r(n) = (9/7) * (28/26) * (124/126) * (344/342) * (1332/1330) * ... = 48/35. - Dimitris Valianatos, Mar 06 2020
There exist 5 groups of order p^3, when p prime, so this is a subsequence of A054397. Three of them are abelian: C_p^3, C_p^2 X C_p and C_p X C_p X C_p = (C_p)^3. For 8 = 2^3, the 2 nonabelian groups are D_8 and Q_8; for odd prime p, the 2 nonabelian groups are (C_p x C_p) : C_p, and C_p^2 : C_p (remark, for p = 2, these two semi-direct products are isomorphic to D_8). Here C, D, Q mean Cyclic, Dihedral, Quaternion groups of the stated order; the symbols X and : mean direct and semidirect products respectively. - Bernard Schott, Dec 11 2021

Examples

			a(3) = 125; since the 3rd prime is 5, a(3) = 5^3 = 125.
		

References

  • Edmund Landau, Elementary Number Theory, translation by Jacob E. Goodman of Elementare Zahlentheorie (Vol. I_1 (1927) of Vorlesungen über Zahlentheorie), by Edmund Landau, with added exercises by Paul T. Bateman and E. E. Kohlbecker, Chelsea Publishing Co., New York, 1958, pp. 31-32.

Crossrefs

Other sequences that are k-th powers of primes are: A000040 (k=1), A001248 (k=2), this sequence (k=3), A030514 (k=4), A050997 (k=5), A030516 (k=6), A092759 (k=7), A179645 (k=8), A179665 (k=9), A030629 (k=10), A079395 (k=11), A030631 (k=12), A138031 (k=13), A030635 (k=16), A138032 (k=17), A030637 (k=18).
Cf. A060800, A131991, A000578, subsequence of A046099.
Subsequence of A007422 and of A054397.

Programs

Formula

n such that A062799(n) = 3. - Benoit Cloitre, Apr 06 2002
a(n) = A000040(n)^3. - Omar E. Pol, Jul 27 2009
A064380(a(n)) = A000010(a(n)). - Vladimir Shevelev, Apr 19 2010
A003415(a(n)) = A079705(n). - Reinhard Zumkeller, Jun 26 2011
A056595(a(n)) = 2. - Reinhard Zumkeller, Aug 15 2011
A000005(a(n)) = 4. - Wesley Ivan Hurt, Sep 10 2013
a(n) = A119959(n) * A008864(n) -1.- R. J. Mathar, Aug 13 2019
Sum_{n>=1} 1/a(n) = P(3) = 0.1747626392... (A085541). - Amiram Eldar, Jul 27 2020
From Amiram Eldar, Jan 23 2021: (Start)
Product_{n>=1} (1 + 1/a(n)) = zeta(3)/zeta(6) (A157289).
Product_{n>=1} (1 - 1/a(n)) = 1/zeta(3) (A088453). (End)

A192015 Arithmetic derivative of prime powers: a(n) = A003415(A000961(n)).

Original entry on oeis.org

0, 1, 1, 4, 1, 1, 12, 6, 1, 1, 32, 1, 1, 1, 10, 27, 1, 1, 80, 1, 1, 1, 1, 14, 1, 1, 1, 192, 1, 1, 1, 1, 108, 1, 1, 1, 1, 1, 1, 1, 1, 22, 75, 1, 448, 1, 1, 1, 1, 1, 1, 1, 1, 26, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 405, 1, 1024, 1, 1, 1, 1, 1, 1, 1, 34
Offset: 1

Views

Author

Reinhard Zumkeller, Jun 26 2011

Keywords

Comments

a(A000040(n)) = 1; a(A002808(n)) > 1;
A001787, A027471, A100484, A079705 and A051674 are subsequences;
A001787 and A024622 give record values and where they occur;
A192016(n) = A003415(a(n)).

Programs

  • Haskell
    a192015 = a003415 . a000961  -- Reinhard Zumkeller, Apr 16 2014
    
  • Mathematica
    Join[{0}, Reap[For[n = 1, n <= 300, n++, f = FactorInteger[n]; If[Length[f] == 1, Sow[n*Total[Apply[#2/#1&, f, {1}]]]]]][[2, 1]]] (* Jean-François Alcover, Feb 21 2014 *)
  • Python
    from sympy import primepi, integer_nthroot, factorint
    def A192015(n):
        if n == 1: return 0
        def f(x): return int(n+x-1-sum(primepi(integer_nthroot(x,k)[0]) for k in range(1,x.bit_length())))
        m, k = n, f(n)
        while m != k:
            m, k = k, f(k)
        return sum((m*e//p for p,e in factorint(m).items())) # Chai Wah Wu, Aug 15 2024

Formula

a(n) = A025474(n) * A025473(n)^(A025474(n) - 1).

A192083 Arithmetic derivative of squares of prime powers: a(n) = A003415(A056798(n)).

Original entry on oeis.org

0, 4, 6, 32, 10, 14, 192, 108, 22, 26, 1024, 34, 38, 46, 500, 1458, 58, 62, 5120, 74, 82, 86, 94, 1372, 106, 118, 122, 24576, 134, 142, 146, 158, 17496, 166, 178, 194, 202, 206, 214, 218, 226, 5324, 18750, 254, 114688, 262, 274, 278, 298, 302, 314, 326, 334
Offset: 1

Views

Author

Reinhard Zumkeller, Jun 26 2011

Keywords

Comments

A001787 and A024622 give record values and where they occur.

Crossrefs

Programs

  • Mathematica
    s[n_] := If[PrimePowerQ[n], f = FactorInteger[n][[1]]; 2*f[[2]]*n^(2 - 1/f[[2]]), Nothing]; s[1] = 0; Array[s, 200] (* Amiram Eldar, Apr 06 2025 *)

Formula

a(n) = 2 * A025474(n) * A025473(n)^(2*A025474(n) - 1).
A192084(n) = A003415(a(n)).

A338519 Integers that can be expressed as a product d*tau(d), where tau is the number of divisors function, in a single way.

Original entry on oeis.org

1, 4, 6, 10, 12, 14, 22, 24, 26, 27, 32, 34, 38, 40, 46, 56, 58, 60, 62, 72, 74, 75, 80, 82, 84, 86, 88, 94, 104, 106, 118, 120, 122, 132, 134, 136, 140, 142, 146, 147, 152, 156, 158, 166, 168, 178, 184, 194, 202, 204, 206, 214, 218, 220, 226, 228, 232, 240, 248, 254
Offset: 1

Views

Author

Michel Marcus, Nov 01 2020

Keywords

Comments

Integers m such that A327166(m) = 1.

Crossrefs

Subsequences: A100484 (2*p), A079705 (3*p^2) that gives odd terms.
Cf. A338520 (similar for sum of divisors).

Programs

  • PARI
    f(n) = sumdiv(n, d, d*numdiv(d) == n); \\ A327166
    isok(n) = f(n)==1;

A349986 Numbers that can be represented as p^2 + p*q + q^2 where p and q are primes.

Original entry on oeis.org

12, 19, 27, 39, 49, 67, 75, 79, 109, 147, 163, 199, 201, 217, 247, 259, 309, 327, 349, 363, 399, 403, 427, 433, 457, 481, 507, 543, 579, 597, 607, 669, 679, 691, 739, 777, 867, 903, 937, 973, 997, 1011, 1027, 1063, 1083, 1093, 1141, 1209, 1227, 1281, 1327, 1387, 1423, 1447, 1489, 1533, 1579, 1587
Offset: 1

Views

Author

J. M. Bergot and Robert Israel, Jan 09 2022

Keywords

Comments

The only square in this sequence is 49.

Examples

			a(3) = 27 is a term because 27 = 3^2+3*3+3^2.
a(4) = 39 is a term because 39 = 2^2+2*5+5^2.
		

Crossrefs

Contains A079705, A244146, A349987.
Subsequence of A024614.

Programs

  • Maple
    N:= 10^4: # for terms <= N
    P:= select(isprime, [2,seq(i,i=3..floor(sqrt(N)),2)]):
    nP:= nops(P):
    S:= {}:
    for i from 1 to nP do
      for j from 1 to i do
        x:= P[i]^2 + P[i]*P[j]+P[j]^2;
        if x > N then break fi;
        S:= S union {x};
    od od:
    sort(convert(S,list));
Showing 1-5 of 5 results.