A079727 a(n) = 1 + C(2,1)^3 + C(4,2)^3 + ... + C(2n,n)^3.
1, 9, 225, 8225, 351225, 16354233, 805243257, 41229480825, 2172976383825, 117106008311825, 6423711336265041, 357470875526646609, 20131502573232075025, 1145190201805448075025, 65706503254247744075025
Offset: 0
Links
- Seiichi Manyama, Table of n, a(n) for n = 0..556
- Zhi-Hong Sun, Congruences concerning Legendre polynomials II", Theorem 3.2, arXiv:1012.3898v2 [math.NT], 2010-2012.
- Zhi-Wei Sun, Open conjectures on congruences, Part A, conjecture A1, arXiv:0911.5665v59 [math.NT], 2009-2011.
Crossrefs
Programs
-
Magma
[&+[Binomial(2*k, k)^3: k in [0..n]]: n in [0..20]]; // Vincenzo Librandi, Nov 16 2016
-
Mathematica
Table[Sum[Binomial[2 k, k]^3, {k, 0, n}], {n, 0, 14}] (* Michael De Vlieger, Nov 15 2016 *)
-
Maxima
makelist(sum(binomial(2*k,k)^3,k,0,n),n,0,12); /* Emanuele Munarini, Nov 15 2016 */
-
PARI
a(n)=sum(k=0,n,binomial(2*k,k)^3)
Formula
a(n) = Sum_{k=0..n} binomial(2*k,k)^3.
G.f.: hypergeom([1/2, 1/2, 1/2], [1, 1], 64*x)/(1-x). - Vladeta Jovovic, Feb 18 2003
G.f.: hypergeom([1/4,1/4],[1],64*x)^2/(1-x). - Mark van Hoeij, Nov 17 2011
Recurrence: (n+2)^3*a(n+2)-(5*n+8)*(13*n^2+38*n+28)*a(n+1)+8*(2n+3)^3*a(n)=0. - Emanuele Munarini, Nov 15 2016
a(n) ~ 2^(6*n+6) / (63*Pi^(3/2)*n^(3/2)). - Vaclav Kotesovec, Nov 16 2016
Comments