cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A358890 a(n) is the first term of the first maximal run of n consecutive numbers with increasing greatest prime factors.

Original entry on oeis.org

14, 4, 1, 8, 90, 168, 9352, 46189, 2515371, 721970, 6449639, 565062156, 11336460025, 37151747513, 256994754033, 14037913234203
Offset: 1

Views

Author

Reinhard Zumkeller, Jan 10 2003

Keywords

Comments

a(16) > 10^13. - Giovanni Resta, Jul 25 2013
The convention gpf(1) = A006530(1) = 1 is used (otherwise we would have a(2) = 2 and a(3) = 24). - Pontus von Brömssen, Dec 05 2022
a(17) > 10^14. - Martin Ehrenstein, Dec 10 2022

Examples

			a(7) = 9352 because the first sequence of seven consecutive numbers with increasing greatest prime factors is 9352=167*7*2^3, 9353=199*47, 9354=1559*3*2, 9355=1871*5, 9356=2339*2^2, 9357=3119*3, and 9358=4679*2. [Corrected by _Jon E. Schoenfield_, Sep 21 2022]
		

Crossrefs

Cf. A006530, A070087, A079748, A079749 (erroneous version), A100384.

Programs

  • Maple
    V:= Vector(11): count:= 0:
    a:= 1: m:= 1: w:= 1:
    for k from 2 while count < 11 do
      v:= max(numtheory:-factorset(k));
      if v > m then m:= v
      else
        if V[k-a] = 0 then V[k-a]:= a; count:= count+1; fi;
        a:= k; m:= v;
      fi
    od:
    convert(V,list); # Robert Israel, Dec 05 2022
  • Python
    from sympy import factorint
    def A358890(n):
        m = 1
        gpf1 = 1
        k = 1
        while 1:
            while 1:
                gpf2 = max(factorint(m+k))
                if gpf2 < gpf1: break
                gpf1 = gpf2
                k += 1
            if k == n: return m
            m += k
            gpf1 = gpf2
            k = 1 # Pontus von Brömssen, Dec 05 2022

Formula

A079748(a(n)) = n-1.
From Pontus von Brömssen, Dec 05 2022: (Start)
A079748(a(n)-1) = 0 for n != 3.
For n != 3, a(n) = A070087(m)+1, where m is the smallest positive integer such that A070087(m+1) - A070087(m) = n.
(End)

Extensions

More terms from Don Reble, Jan 17 2003
Corrected by Jud McCranie, Feb 11 2003
a(14)-a(15) from Giovanni Resta, Jul 25 2013
Name edited, a(1) and a(2) corrected by Pontus von Brömssen, Dec 05 2022
a(16) from Martin Ehrenstein, Dec 07 2022

A079747 Numbers k such that gpf(k-1) < gpf(k) < gpf(k+1), where gpf(k) is the greatest prime factor of k (A006530).

Original entry on oeis.org

2, 9, 10, 21, 22, 25, 28, 33, 46, 57, 58, 78, 82, 85, 91, 92, 93, 106, 115, 121, 126, 133, 136, 141, 145, 148, 166, 169, 170, 171, 172, 176, 177, 178, 190, 201, 205, 213, 217, 221, 222, 226, 232, 235, 236, 248, 253, 261, 262, 276, 289, 290, 301, 316, 325, 346
Offset: 1

Views

Author

Reinhard Zumkeller, Jan 10 2003

Keywords

Comments

Numbers k such that A079748(k-1) > 1.

Examples

			k=25: 25-1 = 24 = 3*2^3, 25 = 5^2 and 25+1 = 26 = 13*2, therefore 25 is a term (3 < 5 < 13).
		

Crossrefs

Programs

Formula

a(n) = A071869(n-1) + 1. - T. D. Noe, Nov 26 2007

A100387 a(n) is the largest number x such that for m=n to n+x-1, A006530(m) decreases.

Original entry on oeis.org

1, 2, 1, 2, 1, 2, 1, 1, 1, 2, 1, 4, 3, 2, 1, 2, 1, 2, 1, 1, 1, 2, 1, 1, 2, 1, 1, 2, 1, 2, 1, 1, 3, 2, 1, 4, 3, 2, 1, 2, 1, 3, 2, 1, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 1, 1, 2, 1, 4, 3, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 3, 2, 1, 2, 1, 1, 3, 2, 1, 1, 2, 1, 1, 3, 2, 1, 2, 1, 1, 1, 1, 3, 2, 1, 2, 1, 2, 1, 2, 1, 3, 2, 1
Offset: 2

Views

Author

Labos Elemer, Dec 10 2004

Keywords

Comments

A006530(m) is the largest prime factor of m.

Examples

			a(13)=4 because the largest prime factors of 13,14,15,16 are 13,7,5,2; but A006530(17)=17.
		

Crossrefs

Programs

  • Mathematica
    <
    				

Formula

From Pontus von Brömssen, Nov 09 2022: (Start)
a(n) = 1 if and only if n >= 2 and n is a term of A070089.
If a(n) > 1 then a(n) = a(n+1)+1.
(End)

Extensions

Edited by Don Reble, Jun 13 2007
Showing 1-3 of 3 results.