cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A075152 Number of possible permutations of a Rubik cube of size n X n X n.

Original entry on oeis.org

1, 3674160, 43252003274489856000, 7401196841564901869874093974498574336000000000, 282870942277741856536180333107150328293127731985672134721536000000000000000
Offset: 1

Views

Author

Warren Power, Sep 05 2002

Keywords

Comments

More precisely, order of group of n X n X n Rubik cube, under assumptions not-s, not-m, not-i.
The three possible assumptions considered here are the following:
s (for n odd) indicates that we are working in the "supergroup" and so take account of twists of the face centers.
m (for n > 3) indicates that the pieces are marked so that we take account of the permutation of the identically-colored pieces on a face.
i (for n > 3) indicates that we are working in the theoretical invisible group and solve the pieces on the interior of the cube as well as the exterior. It is assumed that the M and S traits apply to the interior pieces as if they were on the exterior of a smaller cube.

References

  • Dan Hoey, posting to Cube Lovers List, Jun 24, 1987.
  • Rowley, Chris, The group of the Hungarian magic cube, in Algebraic structures and applications (Nedlands, 1980), pp. 33-43, Lecture Notes in Pure and Appl. Math., 74, Dekker, New York, 1982.

Crossrefs

See A007458, A054434, A074914, A080656-A080662 for other versions.
Cf. A079761, A079762, A152169 (sums give a(2)), A080601, A080602 (sums give a(3)).

Programs

  • Maple
    f := proc(n) local A,B,C,D,E,F,G; if n mod 2 = 1 then A := (n-1)/2; F := 0; B := 1; C := 1; D := 0; E := (n+1)*(n-3)/4; G := (n-1)*(n-3)/4; else A := n/2; F := 1; B := 1; C := 0; D := 0; E := n*(n-2)/4; G := (n-2)^2/4; fi; (2^A*((8!/2)*3^7)^B*((12!/2)*2^11)^C*((4^6)/2)^D*(24!/2)^E)/(24^F*((24^6)/2)^G); end;
  • Mathematica
    f[n_] := Block[{a, b, c, d, e, f, g}, If[OddQ@ n, a = (n - 1)/2; b = c = 1; d = f = 0; e = (n + 1) (n - 3)/4; g = (n - 1) (n - 3)/4, a = n/2; b = f = 1; c = d = 0; e = n (n - 2)/4; g = (n - 2)^2/4]; Ceiling[(2^a*((8!/2)*3^7)^b*((12!/2)*2^11)^c*((4^6)/2)^d*(24!/2)^e)/(24^f*((24^6)/2)^g)]]; Array[f, 10] (* Robert G. Wilson v, May 23 2009 *)
    f[1]=1; f[2]=7!3^6; f[3]=8!3^7 12!2^10;f[n_]:=f[n-2]*24^6*(24!/24^6)^(n-2);Table[f[n],{n,1,10}] (* Herbert Kociemba, Dec 08 2016 *)
    f[1]=1;f[n_]:=7!3^6(6*24!!)^(s=Mod[n,2])24!^(r=(n-s)/2-1)(24!/4!^6)^(r(r+s)); Array[f,5] (* Herbert Kociemba, Jul 03 2022 *)
  • Maxima
    A075152(n) := block( if n = 1 then return (1), [a:1,b:1,c:1,d:1,e:1,f:1,g:1], if mod(n, 2) = 1 then (  a : (n-1)/2,  f : 0,  b : 1,  c : 1,  d : 0,  e : (n+1)*(n-3)/4,  g : (n-1)*(n-3)/4 ) else (  a : n/2,  f : 1,   b : 1,   c : 0,   d : 0,   e : n*(n-2)/4, g : (n-2)^2/4  ), return ( (2^a * ((factorial(8)/2)*3^7)^b * ((factorial(12)/2)*2^11)^c * ((4^6)/2)^d * (factorial(24)/2)^e) / (24^f * ((24^6)/2)^g) ) )$ for i:1 thru 27 step 1 do ( sprint(i, A075152(i)), newline() )$ /* Robert Munafo, Nov 12 2014 */
    
  • PARI
    A075152(n)=ceil(3674160*(11771943321600)^(n%2)*620448401733239439360000^floor((n-2)/2)*(3246670537110000)^floor(((n-2)/2)^2)) \\ Davis Smith, Mar 20 2020

Formula

a(1)=1; a(2)=7!*3^6; a(3)=8!*3^7*12!*2^10; a(n)=a(n-2)*24^6*(24!/24^6)^(n-2). - Herbert Kociemba, Dec 08 2016
a(n) = ceiling(3674160*11771943321600^(n mod 2)*620448401733239439360000^floor((n - 2)/2)*3246670537110000^floor(((n - 2)/2)^2)). - Davis Smith, Mar 20 2020

Extensions

Entry revised by N. J. A. Sloane, Apr 01 2006
Offset changed to 1 by N. J. A. Sloane, Sep 02 2009

A079761 Number of positions that are exactly n moves from the starting position in the 2 X 2 X 2 Rubik cube puzzle counting a half-turn as a single move.

Original entry on oeis.org

1, 9, 54, 321, 1847, 9992, 50136, 227536, 870072, 1887748, 623800, 2644
Offset: 0

Views

Author

N. J. A. Sloane, Feb 20 2003

Keywords

Comments

This is the number of positions that can be reached in n moves from the start, but which cannot be reached in fewer than n moves.
A puzzle in the Rubik cube family. The total number of distinct positions is 3674160. A half-turn is considered to be one move.

References

  • D. R. Hofstadter, Metamagical Themas, Basic Books, NY, 1985, p. 359.

Crossrefs

A152169 Number of positions that are exactly n moves from the starting position in the 2 X 2 X 2 Rubik cube puzzle using only one-way quarter moves.

Original entry on oeis.org

1, 3, 9, 27, 78, 216, 583, 1546, 4035, 10320, 25824, 62832, 146322, 321876, 635632, 988788, 958176, 450280, 66420, 1192
Offset: 0

Views

Author

Alejandro Lorca (alejandro.lorca(AT)fdi.ucm.es), Nov 27 2008

Keywords

Comments

A half-turn is considered to be two moves. The one-way quarter move method has historically being disregarded because of the mechanics of the Rubik's cube. It fills still the complete configuration space with the minimum set of generators.

Crossrefs

A257401 God's number for a Rubik's cube of size n X n X n (using the half turn metric).

Original entry on oeis.org

0, 11, 20
Offset: 1

Views

Author

Peter Woodward, Apr 21 2015

Keywords

Comments

"God's Number" is the maximum number of turns required to solve any scrambled cube. The "Half turn metric" considers a 90- or 180-degree turn of any side to be a single turn. The number is not known for cubes of size larger than 3 X 3 X 3.
God's number has been proved using a brute-force attack for the 2 X 2 X 2 and 3 X 3 X 3 cubes. For the 4 X 4 X 4 cube, it has been proved only that the lower bound is 31, while the most probable value is considered to be 32; solving this by brute force would require checking all the A075152(4) possible permutations of the "Master Cube". - Marco Ripà, Aug 05 2015

Crossrefs

Cf. A256573 (quarter turn metric), A054434 (possible positions), A075152 (possible permutations).

Formula

From Ben Whitmore, May 31 2021: (Start)
a(n) = Theta(n^2/log(n)) [Demaine et al.].
Conjecture: a(n) ~ (1/4)*log(24!/4!^6) * n^2/log(n).
(End)
Showing 1-4 of 4 results.