cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A079941 Greedy frac multiples of log(2): a(1)=1, Sum_{n>0} frac(a(n)*log(2)) = 1.

Original entry on oeis.org

1, 3, 6, 13, 26, 39, 277, 642, 2291, 4582, 6231, 16402, 26573, 36744, 63317, 73488, 110232, 414355, 828710, 1206321, 2412642, 4410929, 5617250, 12026466, 31668469, 51310472, 70952475, 141904950, 394046381
Offset: 1

Views

Author

Benoit Cloitre and Paul D. Hanna, Jan 21 2003

Keywords

Comments

The n-th greedy frac multiple of x is the smallest integer that does not cause Sum_{k=1..n} frac(a(k)*x) to exceed unity; an infinite number of terms appear as the denominators of the convergents to the continued fraction of x.

Examples

			a(4) = 13 since frac(1x) + frac(3x) + frac(6x) + frac(13x) < 1, while frac(1x) + frac(3x) + frac(6x) + frac(k*x) > 1 for all k>6 and k<13.
		

Crossrefs

Cf. A079943 (denominators of convergents to ln2), A079934, A079939, A079940.

Extensions

More terms from Mark Hudson (mrmarkhudson(AT)hotmail.com), Jan 29 2003
a(20)-a(29) from Sean A. Irvine, Aug 31 2025

A079942 Numerators of the convergents of the continued fraction for log(2).

Original entry on oeis.org

0, 1, 2, 7, 9, 61, 192, 253, 445, 1143, 1588, 2731, 4319, 7050, 25469, 261740, 287209, 548949, 836158, 2221265, 3057423, 5278688, 8336111, 13614799, 49180508, 111975815, 385107953, 497083768, 6847196937, 48427462327, 200557046245, 248984508572, 449541554817
Offset: 1

Views

Author

Paul D. Hanna, Jan 19 2003

Keywords

Examples

			9/13 = 0.6923076923076923...
61/88 = 0.69318181818181818...
192/277 = 0.6931407942238267148...
...
log(2) = 0.6931471805599453...
		

Crossrefs

Cf. A002162 (decimal expansion of log(2)), A079941, A079943 (denominators).

Programs

  • Mathematica
    Convergents[ContinuedFraction[Log[2],40]]//Numerator (* Harvey P. Dale, Jun 05 2021 *)

Extensions

Corrected and extended by Harvey P. Dale, Jun 05 2021
Showing 1-2 of 2 results.