A079940
Greedy fractional multiples of 1/e: a(1)=1, Sum_{n>0} frac(a(n)/e) = 1.
Original entry on oeis.org
1, 3, 4, 11, 87, 193, 386, 579, 1457, 23225, 49171, 98342, 147513, 196684, 566827, 13580623, 28245729, 56491458, 84737187, 112982916, 438351041, 466596770, 494842499
Offset: 1
a(4) = 11 since frac(1x) + frac(3x) + frac(4x) + frac(11x) < 1, while frac(1x) + frac(3x) + frac(4x) + frac(k*x) > 1 for all k>4 and k<11.
-
Digits := 100: a := []: s := 0: x := 1.0/exp(1.0): for n from 1 to 1000000 do: temp := evalf(s+frac(n*x)): if (temp<1.0) then a := [op(a),n]: print(n): s := s+evalf(frac(n*x)): fi: od: a;
-
a[1] = 1; a[n_] := a[n] = Block[{k = a[n - 1] + 1, ps = Plus @@ Table[ FractionalPart[ a[i]*E^-1], {i, n - 1}]}, While[ ps + FractionalPart[k*E^-1] > 1, k++ ]; a[n] = k]; Do[ Print[ a[n]], {n, 20}] (* Robert G. Wilson v, Nov 03 2004 *)
More terms from Mark Hudson (mrmarkhudson(AT)hotmail.com), Jan 30 2003
A080142
Greedy frac multiples of 1/Pi: a(1)=1, Sum_{n>0} frac(a(n)*x) = 1 at x=1/Pi, where "frac(y)" denotes the fractional part of y.
Original entry on oeis.org
1, 2, 22, 44, 66, 88, 110, 355, 710, 1065, 1420, 1775, 2130, 2485, 2840, 3195, 3550, 3905, 4260, 4615, 4970, 5325, 5680, 6035, 6390, 6745, 7100, 7455, 7810, 8165, 104348, 104703, 105058, 105413, 105768, 208696, 209051, 312689, 313044, 417037
Offset: 1
Mark Hudson (mrmarkhudson(AT)hotmail.com), Jan 30 2003
a(3) = 22 since frac(1x) + frac(2x) + frac(22x) < 1, while frac(1x) + frac(2x) + frac(k*x) > 1 for all k>2 and k<22.
-
Digits := 1000: a := []: s := 0: x := evalf(1.0/Pi): for n from 1 to 10000000 do: temp := evalf(s+frac(n*x)): if (temp<1.0) then a := [op(a),n]: print(n): s := s+evalf(frac(n*x)): fi: od: a;
-
a[1] = 1; a[n_] := a[n] = Block[{k = a[n - 1] + 1, fps = Plus @@ Table[FractionalPart[a[i]*Pi^-1], {i, n - 1}]}, While[fps + FractionalPart[k*Pi^-1] > 1, k++ ]; a[n] = k]; Do[ Print[ a[n]], {n, 40}] (* Robert G. Wilson v, Nov 03 2004 *)
A079943
Denominators of the convergents of the continued fraction for log(2).
Original entry on oeis.org
1, 3, 10, 13, 88, 277, 365, 642, 1649, 2291, 3940, 6231, 10171, 36744, 377611, 414355, 791966, 1206321, 3204608, 4410929, 7615537, 12026466, 19642003, 70952475, 161546953, 555593334, 717140287, 9878417065, 69866059742, 289342656033
Offset: 1
9/13 = 0.6923076923076923...
61/88 = 0.69318181818181818...
192/277 = 0.6931407942238267148...
...
log(2) = 0.6931471805599453...
A079942
Numerators of the convergents of the continued fraction for log(2).
Original entry on oeis.org
0, 1, 2, 7, 9, 61, 192, 253, 445, 1143, 1588, 2731, 4319, 7050, 25469, 261740, 287209, 548949, 836158, 2221265, 3057423, 5278688, 8336111, 13614799, 49180508, 111975815, 385107953, 497083768, 6847196937, 48427462327, 200557046245, 248984508572, 449541554817
Offset: 1
9/13 = 0.6923076923076923...
61/88 = 0.69318181818181818...
192/277 = 0.6931407942238267148...
...
log(2) = 0.6931471805599453...
A080157
Greedy frac multiples of gamma: a(1)=1, Sum_{n>0} frac(a(n)*x) = 1 at x=gamma, where "frac(y)" denotes the fractional part of y.
Original entry on oeis.org
1, 2, 7, 9, 26, 52, 149, 272, 395, 790, 1185, 1580, 5653, 10911, 16169, 26685, 58628, 85313, 117256, 175884, 559595, 2179752, 5420066
Offset: 1
Mark Hudson (mrmarkhudson(AT)hotmail.com), Jan 31 2003
a(3) = 7 since frac(1x) + frac(2x) + frac(7x) < 1, while frac(1x) + frac(2x) + frac(k*x) > 1 for all k>2 and k<7.
A080158
Greedy frac multiples of Catalan's constant, G: a(1)=1, Sum_{n>0} frac(a(n)*x) = 1 at x=G=A006752, where "frac(y)" denotes the fractional part of y.
Original entry on oeis.org
1, 11, 107, 10579, 21158, 53014, 106028, 625708, 721157, 1442314, 2163471, 2884628, 3605785, 4326942, 16682060, 66007083, 115332106, 164657129, 329314258, 493971387, 658628516
Offset: 1
Mark Hudson (mrmarkhudson(AT)hotmail.com), Jan 31 2003
a(3) = 107 since frac(1x) + frac(11x) + frac(107x) < 1, while frac(1x) + frac(11x) + frac(k*x) > 1 for all k>11 and k<107.
Showing 1-6 of 6 results.
Comments