A079939
Greedy frac multiples of e: a(1)=1, Sum_{n>0} frac(a(n)*e)=1.
Original entry on oeis.org
1, 3, 7, 14, 39, 78, 394, 1001, 2002, 3003, 9545, 10546, 27634, 154257, 398959, 797918, 1196877, 1595836, 5394991, 5793950, 15786014, 130087267, 312129649, 624259298
Offset: 1
a(4) = 14 since frac(1x) + frac(3x) + frac(7x) + frac(14x) < 1, while frac(1x) + frac(3x) + frac(7x) + frac(k*x) > 1 for all k>7 and k<14.
a(15)-a(16) from Mark Hudson (mrmarkhudson(AT)hotmail.com), Jan 30 2003
A079941
Greedy frac multiples of log(2): a(1)=1, Sum_{n>0} frac(a(n)*log(2)) = 1.
Original entry on oeis.org
1, 3, 6, 13, 26, 39, 277, 642, 2291, 4582, 6231, 16402, 26573, 36744, 63317, 73488, 110232, 414355, 828710, 1206321, 2412642, 4410929, 5617250, 12026466, 31668469, 51310472, 70952475, 141904950, 394046381
Offset: 1
a(4) = 13 since frac(1x) + frac(3x) + frac(6x) + frac(13x) < 1, while frac(1x) + frac(3x) + frac(6x) + frac(k*x) > 1 for all k>6 and k<13.
More terms from Mark Hudson (mrmarkhudson(AT)hotmail.com), Jan 29 2003
A080142
Greedy frac multiples of 1/Pi: a(1)=1, sum(n>0,frac(a(n)*x))=1 at x=1/Pi, where "frac(y)" denotes the fractional part of y.
Original entry on oeis.org
1, 2, 22, 44, 66, 88, 110, 355, 710, 1065, 1420, 1775, 2130, 2485, 2840, 3195, 3550, 3905, 4260, 4615, 4970, 5325, 5680, 6035, 6390, 6745, 7100, 7455, 7810, 8165, 104348, 104703, 105058, 105413, 105768, 208696, 209051, 312689, 313044, 417037
Offset: 1
Mark Hudson (mrmarkhudson(AT)hotmail.com), Jan 30 2003
a(3) = 22 since frac(1x) + frac(2x) + frac(22x) < 1, while frac(1x) + frac(2x) + frac(k*x) > 1 for all k>2 and k<22.
-
Digits := 1000: a := []: s := 0: x := evalf(1.0/Pi): for n from 1 to 10000000 do: temp := evalf(s+frac(n*x)): if (temp<1.0) then a := [op(a),n]: print(n): s := s+evalf(frac(n*x)): fi: od: a;
-
a[1] = 1; a[n_] := a[n] = Block[{k = a[n - 1] + 1, fps = Plus @@ Table[FractionalPart[a[i]*Pi^-1], {i, n - 1}]}, While[fps + FractionalPart[k*Pi^-1] > 1, k++ ]; a[n] = k]; Do[ Print[ a[n]], {n, 40}] (* Robert G. Wilson v, Nov 03 2004 *)
A080157
Greedy frac multiples of gamma: a(1)=1, sum(n>0,frac(a(n)*x))=1 at x=gamma, where "frac(y)" denotes the fractional part of y.
Original entry on oeis.org
1, 2, 7, 9, 26, 52, 149, 272, 395, 790, 1185, 1580, 5653, 10911, 16169, 26685, 58628, 85313, 117256, 175884, 559595, 2179752, 5420066
Offset: 1
Mark Hudson (mrmarkhudson(AT)hotmail.com), Jan 31 2003
a(3) = 7 since frac(1x) + frac(2x) + frac(7x) < 1, while frac(1x) + frac(2x) + frac(k*x) > 1 for all k>2 and k<7.
A080158
Greedy frac multiples of Catalan's constant, G: a(1)=1, sum(n>0,frac(a(n)*x))=1 at x=G, where "frac(y)" denotes the fractional part of y.
Original entry on oeis.org
1, 11, 107, 10579, 21158, 53014, 106028, 625708, 721157, 1442314, 2163471, 2884628, 3605785, 4326942
Offset: 1
Mark Hudson (mrmarkhudson(AT)hotmail.com), Jan 31 2003
a(3) = 107 since frac(1x) + frac(11x) + frac(107x) < 1, while frac(1x) + frac(11x) + frac(k*x) > 1 for all k>11 and k<107.
Showing 1-5 of 5 results.
Comments