cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-7 of 7 results.

A079941 Greedy frac multiples of log(2): a(1)=1, Sum_{n>0} frac(a(n)*log(2)) = 1.

Original entry on oeis.org

1, 3, 6, 13, 26, 39, 277, 642, 2291, 4582, 6231, 16402, 26573, 36744, 63317, 73488, 110232, 414355, 828710, 1206321, 2412642, 4410929, 5617250, 12026466, 31668469, 51310472, 70952475, 141904950, 394046381
Offset: 1

Views

Author

Benoit Cloitre and Paul D. Hanna, Jan 21 2003

Keywords

Comments

The n-th greedy frac multiple of x is the smallest integer that does not cause Sum_{k=1..n} frac(a(k)*x) to exceed unity; an infinite number of terms appear as the denominators of the convergents to the continued fraction of x.

Examples

			a(4) = 13 since frac(1x) + frac(3x) + frac(6x) + frac(13x) < 1, while frac(1x) + frac(3x) + frac(6x) + frac(k*x) > 1 for all k>6 and k<13.
		

Crossrefs

Cf. A079943 (denominators of convergents to ln2), A079934, A079939, A079940.

Extensions

More terms from Mark Hudson (mrmarkhudson(AT)hotmail.com), Jan 29 2003
a(20)-a(29) from Sean A. Irvine, Aug 31 2025

A079937 Greedy frac multiples of Pi^2/6: a(1)=1, Sum_{n>=1} frac(a(n)*x) = 1 at x = Pi^2/6.

Original entry on oeis.org

1, 2, 14, 45, 107, 138, 276, 414, 1135, 2270, 6672, 12209, 18881, 180865, 361730, 542595, 723460, 2031679, 7945851, 15891702, 21805874, 29751725, 43611748, 65417622, 87223496, 362754007, 384559881, 406365755
Offset: 1

Views

Author

Benoit Cloitre and Paul D. Hanna, Jan 21 2003

Keywords

Comments

The n-th greedy frac multiple of x is the smallest integer that does not cause Sum_{k=1..n} frac(a(k)*x) to exceed unity; an infinite number of terms appear as the denominators of the convergents to the continued fraction of x.

Examples

			a(4) = 45 since frac(1*x) + frac(2*x) + frac(14*x) + frac(45*x) < 1, while frac(1*x) + frac(2*x) + frac(14*x) + frac(k*x) > 1 for all k > 14 and k < 45.
		

Crossrefs

Cf. A080017 (denominators of convergents to Pi^2/6), A079934, A079938, A079939.

Extensions

a(15)-a(28) from Sean A. Irvine, Aug 30 2025

A079940 Greedy fractional multiples of 1/e: a(1)=1, Sum_{n>0} frac(a(n)/e) = 1.

Original entry on oeis.org

1, 3, 4, 11, 87, 193, 386, 579, 1457, 23225, 49171, 98342, 147513, 196684, 566827, 13580623, 28245729, 56491458, 84737187, 112982916, 438351041, 466596770, 494842499
Offset: 1

Views

Author

Benoit Cloitre and Paul D. Hanna, Jan 21 2003

Keywords

Comments

The n-th greedy fractional multiple of x is the smallest integer m that does not cause Sum_{k=1..n} frac(m*x) to exceed unity; an infinite number of terms appear as the denominators of the convergents to the continued fraction of 1/e.
After a(20), there is only 109305220 - 297122396/e = ~1.06317354345346734...*10^-8 to work with.

Examples

			a(4) = 11 since frac(1x) + frac(3x) + frac(4x) + frac(11x) < 1, while frac(1x) + frac(3x) + frac(4x) + frac(k*x) > 1 for all k>4 and k<11.
		

Crossrefs

Cf. A007676 (numerators of convergents to e), A079934, A079939, A079941.

Programs

  • Maple
    Digits := 100: a := []: s := 0: x := 1.0/exp(1.0): for n from 1 to 1000000 do: temp := evalf(s+frac(n*x)): if (temp<1.0) then a := [op(a),n]: print(n): s := s+evalf(frac(n*x)): fi: od: a;
  • Mathematica
    a[1] = 1; a[n_] := a[n] = Block[{k = a[n - 1] + 1, ps = Plus @@ Table[ FractionalPart[ a[i]*E^-1], {i, n - 1}]}, While[ ps + FractionalPart[k*E^-1] > 1, k++ ]; a[n] = k]; Do[ Print[ a[n]], {n, 20}] (* Robert G. Wilson v, Nov 03 2004 *)

Extensions

More terms from Mark Hudson (mrmarkhudson(AT)hotmail.com), Jan 30 2003
a(16)-a(20) from Robert G. Wilson v, Nov 03 2004
a(21)-a(23) from Sean A. Irvine, Aug 30 2025

A079938 Greedy frac multiples of Pi: a(1)=1, Sum_{n>=1} frac(a(n)*Pi) = 1.

Original entry on oeis.org

1, 2, 3, 8, 99, 33102, 66317, 265381, 1360120, 25510582, 78256779, 156513558, 209259755, 340262731, 1963319607, 6701487259, 8664806866, 13402974518, 20104461777, 26805949036, 33507436295, 40208923554, 46910410813
Offset: 1

Views

Author

Benoit Cloitre and Paul D. Hanna, Jan 21 2003

Keywords

Comments

The n-th greedy frac multiple of x is the smallest integer that does not cause Sum_{k=1..n} frac(a(k)*x) to exceed unity; an infinite number of terms appear as the denominators of the convergents to the continued fraction of x.

Examples

			a(4) = 8 since frac(1x*) + frac(2*x) + frac(3*x) + frac(8*x) < 1, while frac(1*x) + frac(2*x) + frac(3*x) + frac(k*x) > 1 for all k > 3 and k < 8.
		

Crossrefs

Cf. A002486 (denominators of convergents to Pi), A079934, A079937, A079939.

Programs

  • Maple
    Digits := 100: a := []: s := 0: x := Pi: for n from 1 to 10000000 do: temp := evalf(s+frac(n*x)): if (temp<1.0) then a := [op(a),n]: print(n): s := s+evalf(frac(n*x)): fi: od: a;
  • PARI
    first(n)=my(v=vector(n),s=1.,p=Pi-3,k); for(m=1,oo, my(t=frac(p*m)); if(tCharles R Greathouse IV, Jul 25 2024

Extensions

a(9) from Mark Hudson, Jan 30 2003
a(10)-a(23) from Charles R Greathouse IV, Jul 26 2024

A080142 Greedy frac multiples of 1/Pi: a(1)=1, sum(n>0,frac(a(n)*x))=1 at x=1/Pi, where "frac(y)" denotes the fractional part of y.

Original entry on oeis.org

1, 2, 22, 44, 66, 88, 110, 355, 710, 1065, 1420, 1775, 2130, 2485, 2840, 3195, 3550, 3905, 4260, 4615, 4970, 5325, 5680, 6035, 6390, 6745, 7100, 7455, 7810, 8165, 104348, 104703, 105058, 105413, 105768, 208696, 209051, 312689, 313044, 417037
Offset: 1

Views

Author

Mark Hudson (mrmarkhudson(AT)hotmail.com), Jan 30 2003

Keywords

Comments

The n-th greedy frac multiple of x is the smallest integer that does not cause sum(k=1..n,frac(a(k)*x)) to exceed unity; an infinite number of terms appear as the denominators of the convergents to the continued fraction of x.

Examples

			a(3) = 22 since frac(1x) + frac(2x) + frac(22x) < 1, while frac(1x) + frac(2x) + frac(k*x) > 1 for all k>2 and k<22.
		

Crossrefs

Programs

  • Maple
    Digits := 1000: a := []: s := 0: x := evalf(1.0/Pi): for n from 1 to 10000000 do: temp := evalf(s+frac(n*x)): if (temp<1.0) then a := [op(a),n]: print(n): s := s+evalf(frac(n*x)): fi: od: a;
  • Mathematica
    a[1] = 1; a[n_] := a[n] = Block[{k = a[n - 1] + 1, fps = Plus @@ Table[FractionalPart[a[i]*Pi^-1], {i, n - 1}]}, While[fps + FractionalPart[k*Pi^-1] > 1, k++ ]; a[n] = k]; Do[ Print[ a[n]], {n, 40}] (* Robert G. Wilson v, Nov 03 2004 *)

A080157 Greedy frac multiples of gamma: a(1)=1, sum(n>0,frac(a(n)*x))=1 at x=gamma, where "frac(y)" denotes the fractional part of y.

Original entry on oeis.org

1, 2, 7, 9, 26, 52, 149, 272, 395, 790, 1185, 1580, 5653, 10911, 16169, 26685, 58628, 85313, 117256, 175884, 559595, 2179752, 5420066
Offset: 1

Views

Author

Mark Hudson (mrmarkhudson(AT)hotmail.com), Jan 31 2003

Keywords

Examples

			a(3) = 7 since frac(1x) + frac(2x) + frac(7x) < 1, while frac(1x) + frac(2x) + frac(k*x) > 1 for all k>2 and k<7.
		

Crossrefs

Cf. A079938, A079939, A079940, A079941, A080142. Searching in the OEIS for "greedy frac" gives related sequences.

Programs

  • Maple
    Digits := 1000: a := []: s := 0: x := evalf(gamma): for n from 1 to 10000000 do: temp := evalf(s+frac(n*x)): if (temp<1.0) then a := [op(a),n]: print(n): s := s+evalf(frac(n*x)): fi: od: a;

A080158 Greedy frac multiples of Catalan's constant, G: a(1)=1, sum(n>0,frac(a(n)*x))=1 at x=G, where "frac(y)" denotes the fractional part of y.

Original entry on oeis.org

1, 11, 107, 10579, 21158, 53014, 106028, 625708, 721157, 1442314, 2163471, 2884628, 3605785, 4326942
Offset: 1

Views

Author

Mark Hudson (mrmarkhudson(AT)hotmail.com), Jan 31 2003

Keywords

Comments

For definition of how the "Greedy Frac" sequence is defined, see other sequences in index.

Examples

			a(3) = 107 since frac(1x) + frac(11x) + frac(107x) < 1, while frac(1x) + frac(11x) + frac(k*x) > 1 for all k>11 and k<107.
		

Crossrefs

Programs

  • Maple
    Digits := 1000: a := []: s := 0: x := evalf(Catalan): for n from 1 to 5000000 do: temp := evalf(s+frac(n*x)): if (temp<1.0) then a := [op(a),n]: print(n): s := s+evalf(frac(n*x)): fi: od: a;
Showing 1-7 of 7 results.