A080130 Decimal expansion of exp(-gamma).
5, 6, 1, 4, 5, 9, 4, 8, 3, 5, 6, 6, 8, 8, 5, 1, 6, 9, 8, 2, 4, 1, 4, 3, 2, 1, 4, 7, 9, 0, 8, 8, 0, 7, 8, 6, 7, 6, 5, 7, 1, 0, 3, 8, 6, 9, 2, 5, 1, 5, 3, 1, 6, 8, 1, 5, 4, 1, 5, 9, 0, 7, 6, 0, 4, 5, 0, 8, 7, 9, 6, 7, 0, 7, 4, 2, 8, 5, 6, 3, 7, 1, 3, 2, 8, 7, 1, 1, 5, 8, 9, 3, 4, 2, 1, 4, 3, 5, 8, 7, 6, 7, 3, 1
Offset: 0
Examples
0.56145948356688516982414321479088078676571...
References
- Steven R. Finch, Mathematical Constants, Cambridge University Press, 2003, Sections 1.5 p. 29, 2.7 p. 117 and 5.4 p. 285.
Links
- G. C. Greubel, Table of n, a(n) for n = 0..10000
- Steven R. Finch, Mathematical Constants II, Encyclopedia of Mathematics and Its Applications, Cambridge University Press, Cambridge, 2018, p. 202.
- Jeffrey C. Lagarias, Euler's constant: Euler's work and modern developments, Bull. Amer. Math. Soc., 50 (2013), 527-628; arXiv:1303.1856 [math.NT], 2013.
- Doron Zeilberger and Noam Zeilberger, Fractional Counting of Integer Partitions, 2018; Local copy [Pdf file only, no active links]
Crossrefs
Programs
-
Magma
R:= RealField(100); Exp(-EulerGamma(R)); // G. C. Greubel, Aug 28 2018
-
Maple
evalf(exp(-gamma), 120); # Alois P. Heinz, Feb 24 2022
-
Mathematica
RealDigits[N[Exp[-EulerGamma], 200]][[1]] (* Arkadiusz Wesolowski, Aug 26 2012 *)
-
PARI
default(realprecision, 100); exp(-Euler) \\ G. C. Greubel, Aug 28 2018
Formula
Equals lim inf_{n->oo} phi(n)*log(log(n))/n. - Arkadiusz Wesolowski, Aug 26 2012
From Alois P. Heinz, Dec 05 2018: (Start)
Equals lim_{k->oo} log(k)*Product_{prime p<=k} (1-1/p). - Amiram Eldar, Jul 09 2020
Equals Product_{k>=1} (1+1/k)*exp(-1/k). - Amiram Eldar, Mar 20 2022
Comments