A080145 a(n) = Sum_{m=1..n} Sum_{i=1..m} F(i)*F(i+1) where F(n)=Fibonacci numbers A000045.
0, 1, 4, 13, 37, 101, 269, 710, 1865, 4890, 12810, 33546, 87834, 229963, 602062, 1576231, 4126639, 10803695, 28284455, 74049680, 193864595, 507544116, 1328767764, 3478759188, 9107509812, 23843770261, 62423800984, 163427632705
Offset: 0
Links
- Vincenzo Librandi, Table of n, a(n) for n = 0..1000
- Kenneth Edwards and Michael A. Allen, New combinatorial interpretations of the Fibonacci numbers squared, golden rectangle numbers, and Jacobsthal numbers using two types of tile, J. Int. Seq. 24 (2021) Article 21.3.8.
- Justin M. Troyka and Yan Zhuang, Fibonacci numbers, consecutive patterns, and inverse peaks, arXiv:2109.14774 [math.CO], 2021.
- Yan Zhuang, A lifting of the Goulden-Jackson cluster method to the Malvenuto-Reutenauer algebra, arXiv:2108.10309 [math.CO], 2021.
- Index entries for linear recurrences with constant coefficients, signature (4,-3,-3,4,-1).
Programs
-
GAP
F:=Fibonacci;; List([0..30], n-> (4*F(n+1)*F(n+2)-2*n-3-(-1)^n)/4); # G. C. Greubel, Jul 23 2019
-
Magma
[(4*Lucas(2*n+3)+(-1)^(n+1)-10*n-15)/20: n in [0..30]]; // Vincenzo Librandi, Aug 22 2017
-
Mathematica
CoefficientList[Series[x/((1-2x-2x^2+x^3)(1-x)^2), {x, 0, 30}], x] (* Vladimir Joseph Stephan Orlovsky, Jul 21 2009 *) With[{F=Fibonacci}, Table[(4*F[n+1]*F[n+2]-2*n-3-(-1)^n)/4, {n,0,30}]] (* G. C. Greubel, Jul 23 2019 *)
-
PARI
L(n)=fibonacci(n-1)+fibonacci(n+1) a(n)=(4*L(2*n+3)-(-1)^n-10*n-15)/20 \\ Charles R Greathouse IV, Aug 26 2017
-
Sage
f=fibonacci; [(4*f(n+1)*f(n+2)-2*n-3-(-1)^n)/4 for n in (0..30)] # G. C. Greubel, Jul 23 2019
Formula
a(n) = F(n+1)*F(n+2) - floor((n+2)/2).
G.f.: x/((1 - 2*x - 2*x^2 + x^3)*(1-x)^2).
a(n) = (4*Lucas(2*n + 3) + (-1)^(n+1) - 10*n - 15)/20. - Ehren Metcalfe, Aug 21 2017
a(n) = (4*Fibonacci(n+1)*Fibonacci(n+2) - 2*n - 3 - (-1)^n)/4. - G. C. Greubel, Jul 23 2019
a(n) = Sum_{j=1..n} j*F(n+1-j)*F(n+2-j). - Michael A. Allen, Jan 07 2022
Comments