cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A080145 a(n) = Sum_{m=1..n} Sum_{i=1..m} F(i)*F(i+1) where F(n)=Fibonacci numbers A000045.

Original entry on oeis.org

0, 1, 4, 13, 37, 101, 269, 710, 1865, 4890, 12810, 33546, 87834, 229963, 602062, 1576231, 4126639, 10803695, 28284455, 74049680, 193864595, 507544116, 1328767764, 3478759188, 9107509812, 23843770261, 62423800984, 163427632705
Offset: 0

Views

Author

Mario Catalani (mario.catalani(AT)unito.it), Jan 31 2003

Keywords

Comments

This is the 2-fold convolution of A001654 with the sequence 1,1,1,....
Equivalently, partial sums of A064831 which is the partial sums of A001654. - Joerg Arndt, Oct 01 2021
a(n) is the number of permutations p in Sn(321) such that p^(-1) has exactly one left peak. See Troyka and Zhuang. - Michel Marcus, Oct 01 2021

Crossrefs

Programs

  • GAP
    F:=Fibonacci;; List([0..30], n-> (4*F(n+1)*F(n+2)-2*n-3-(-1)^n)/4); # G. C. Greubel, Jul 23 2019
  • Magma
    [(4*Lucas(2*n+3)+(-1)^(n+1)-10*n-15)/20: n in [0..30]]; // Vincenzo Librandi, Aug 22 2017
    
  • Mathematica
    CoefficientList[Series[x/((1-2x-2x^2+x^3)(1-x)^2), {x, 0, 30}], x] (* Vladimir Joseph Stephan Orlovsky, Jul 21 2009 *)
    With[{F=Fibonacci}, Table[(4*F[n+1]*F[n+2]-2*n-3-(-1)^n)/4, {n,0,30}]] (* G. C. Greubel, Jul 23 2019 *)
  • PARI
    L(n)=fibonacci(n-1)+fibonacci(n+1)
    a(n)=(4*L(2*n+3)-(-1)^n-10*n-15)/20 \\ Charles R Greathouse IV, Aug 26 2017
    
  • Sage
    f=fibonacci; [(4*f(n+1)*f(n+2)-2*n-3-(-1)^n)/4 for n in (0..30)] # G. C. Greubel, Jul 23 2019
    

Formula

a(n) = F(n+1)*F(n+2) - floor((n+2)/2).
G.f.: x/((1 - 2*x - 2*x^2 + x^3)*(1-x)^2).
a(n) = (4*Lucas(2*n + 3) + (-1)^(n+1) - 10*n - 15)/20. - Ehren Metcalfe, Aug 21 2017
a(n) = (4*Fibonacci(n+1)*Fibonacci(n+2) - 2*n - 3 - (-1)^n)/4. - G. C. Greubel, Jul 23 2019
a(n) = Sum_{j=1..n} j*F(n+1-j)*F(n+2-j). - Michael A. Allen, Jan 07 2022