A001654 Golden rectangle numbers: F(n) * F(n+1), where F(n) = A000045(n) (Fibonacci numbers).
0, 1, 2, 6, 15, 40, 104, 273, 714, 1870, 4895, 12816, 33552, 87841, 229970, 602070, 1576239, 4126648, 10803704, 28284465, 74049690, 193864606, 507544127, 1328767776, 3478759200, 9107509825, 23843770274, 62423800998, 163427632719, 427859097160, 1120149658760
Offset: 0
A230448 T(n, k) = T(n-1, k-1) + T(n-1, k) with T(n, 0) = 1 and T(n, n) = A226205(n+1), n >= 0 and 0 <= k <= n.
1, 1, 0, 1, 1, 3, 1, 2, 4, 5, 1, 3, 6, 9, 16, 1, 4, 9, 15, 25, 39, 1, 5, 13, 24, 40, 64, 105, 1, 6, 18, 37, 64, 104, 169, 272, 1, 7, 24, 55, 101, 168, 273, 441, 715, 1, 8, 31, 79, 156, 269, 441, 714, 1156, 1869, 1, 9, 39, 110, 235, 425, 710, 1155, 1870, 3025, 4896
Offset: 0
Comments
Examples
The first few rows of triangle T(n, k), n >= 0 and 0 <= k <= n. n/k 0 1 2 3 4 5 6 7 ------------------------------------------------ 0| 1 1| 1, 0 2| 1, 1, 3 3| 1, 2, 4, 5 4| 1, 3, 6, 9, 16 5| 1, 4, 9, 15, 25, 39 6| 1, 5, 13, 24, 40, 64, 105 7| 1, 6, 18, 37, 64, 104, 169, 272 The triangle as a square array Tsq(n, k) = T(n+k, k), n >= 0 and k >= 0. n/k 0 1 2 3 4 5 6 7 ------------------------------------------------ 0| 1, 0, 3, 5, 16, 39, 105, 272 1| 1, 1, 4, 9, 25, 64, 169, 441 2| 1, 2, 6, 15, 40, 104, 273, 714 3| 1, 3, 9, 24, 64, 168, 441, 1155 4| 1, 4, 13, 37, 101, 269, 710, 1865 5| 1, 5, 18, 55, 156, 425, 1135, 3000 6| 1, 6, 24, 79, 235, 660, 1795, 4795 7| 1, 7, 31, 110, 345, 1005, 2800, 7595
Crossrefs
Programs
-
Maple
T := proc(n, k) option remember: if k=0 then return(1) elif k=n then return(combinat[fibonacci](n+2)*combinat[fibonacci](n-1)) else procname(n-1, k-1) + procname(n-1, k) fi: end: seq(seq(T(n, k), k=0..n), n=0..10); # End first program. T := proc(n, k): add(A035317(n+k-p-2, p), p=0..k) end: A035317 := proc(n, k): add((-1)^(i+k) * binomial(i+n-k+1, i), i=0..k) end: seq(seq(T(n, k), k=0..n), n=0..10); # End second program.
Formula
T(n, k) = T(n-1, k-1) + T(n-1, k) with T(n, 0) = 1 and T(n, n) = F(n+2) * F(n-1) = A226205(n+1) with F(n) = A000045(n), the Fibonacci numbers, n >= 0 and 0 <= k <= n.
T(n, k) = sum(A035317(n+k-p-2, p), p=0..k), n >= 0 and 0 <= k <= n.
T(n+p+2, p-2) = A080239(n+2*p-1) - sum(A035317(n-k+p-1, k+p-1), k=0..floor(n/2)), n >= 0 and p >= 2.
The triangle as a square array Tsq(n, k) = T(n+k, k), n >= 0 and k >= 0.
Tsq(n, k) = sum(Tsq(n-1, i), i=0..k), n >= 1 and k >= 0, with Tsq(0, k) = A226205(k+1).
The two G.f.’s given below generate the terms in the n-th row of the square array Tsq(n, k). The remarkable second G.f. is the partial fraction expansion of the first G.f..
G.f.: 1/((1-x)^(n-2)*(1+x)*(x^2-3*x+1)), n >= 0.
Comments
Examples
References
Links
Crossrefs
Programs
Haskell
Magma
Maple
Mathematica
PARI
PARI
Python
Python
Formula
Extensions