A080149 Numbers k such that k^2 + 1 and k^2 + 3 are both prime.
2, 4, 10, 14, 74, 94, 130, 134, 146, 160, 230, 256, 326, 340, 350, 406, 430, 440, 470, 584, 634, 686, 700, 704, 784, 860, 920, 986, 1054, 1070, 1156, 1210, 1324, 1340, 1354, 1366, 1394, 1420, 1456, 1460, 1564, 1700, 1784, 1816, 1876, 2006, 2080, 2096, 2174
Offset: 1
Examples
10 is in this sequence because 101 and 103 are both prime.
References
- P. Ribenboim, "The New Book of Prime Number Records," Springer-Verlag, 1996, p. 408.
Links
- Zak Seidov, Table of n, a(n) for n = 1..32898 (terms < 10^7, first 1000 terms from T. D. Noe)
- G. H. Hardy and J. E. Littlewood, Some problems of 'Partitio numerorum'; III: On the expression of a number as a sum of primes, Acta Math., Vol. 44, No. 1 (1923), pp. 1-70.
Programs
-
Mathematica
lst={}; Do[If[PrimeQ[m^2+1]&&PrimeQ[m^2+3], AppendTo[lst, m]], {m, 3000}]; lst okQ[n_]:=Module[{n2=n^2},PrimeQ[n2+1]&&PrimeQ[n2+3]]; Select[Range[2200], okQ] (* Harvey P. Dale, Apr 21 2011 *) Select[Range[2500],AllTrue[#^2+{1,3},PrimeQ]&] (* Harvey P. Dale, Sep 07 2023 *)
-
PARI
isA080149(n) = isprime(n^2+1) && isprime(n^2+3) \\ Michael B. Porter, Mar 22 2010
Formula
Conjecture: a(n) is asymptotic to c*n*log(n)^2 with c around 2.9... - Benoit Cloitre, Apr 16 2004
Comments