cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A052248 Greatest prime divisor of all composite numbers between p and next prime.

Original entry on oeis.org

2, 3, 5, 3, 7, 3, 11, 13, 5, 17, 19, 7, 23, 17, 29, 5, 31, 23, 3, 37, 41, 43, 47, 11, 17, 53, 3, 37, 61, 43, 67, 23, 73, 5, 31, 79, 83, 43, 89, 5, 61, 3, 97, 11, 103, 109, 113, 19, 29, 79, 5, 83, 127, 131, 89, 5, 137, 139, 47, 97, 151, 103, 13, 157, 163, 167, 173, 29, 13
Offset: 2

Views

Author

Keywords

Comments

Or, largest of all prime factors of the numbers between prime(n) and prime(n+1).
a(n) = 3, 5, 7, 11, 13 iff prime(n) is in A059960, A080185, A080186, A080187, A080188 respectively. This sequence defines a mapping f of primes > 2 to primes (cf. A080189) and f(p) < p holds for all p > 2. - Klaus Brockhaus, Feb 10 2003
a(n) = A006530(A061214(n)). - Reinhard Zumkeller, Jun 22 2011

Examples

			a(8) = 11 since 20 = 2*2*5, 21 = 3*7, 22 = 2*11 are the numbers between prime(8) = 19 and prime(9) = 23.
For n=9, n-th prime is 23, composites between 23 and next prime are 24 25 26 27 29 of which largest prime divisor is 13, so a(9)=13.
		

Crossrefs

Programs

  • Haskell
    a052248 n = a052248_list !! (n-2)
    a052248_list = f a065091_list where
       f (p:ps'@(p':ps)) = (maximum $ map a006530 [p+1..p'-1]) : f ps'
    -- Reinhard Zumkeller, Jun 22 2011
  • Mathematica
    g[n_] := Block[{t = Range[Prime[n] + 1, Prime[n + 1] - 1]}, Max[First /@ Flatten[ FactorInteger@t, 1]]]; Table[ g[n], {n, 2, 72}] (* Robert G. Wilson v, Feb 08 2006 *)
    cmp[{a_,b_}]:=Max[Flatten[FactorInteger/@Range[a+1,b-1],1][[All,1]]]; cmp/@ Partition[ Prime[Range[2,80]],2,1] (* Harvey P. Dale, May 16 2020 *)
  • PARI
    forprime(p=3,360,q=nextprime(p+1); m=0; for(j=p+1,q-1,f=factor(j); a=f[matsize(f)[1],1]; if(m
    				

Formula

a(n) = max(prime(n) < k < prime(n+1), A006530(k)).

A386252 Numbers m of the form 2^i * 3^j * 5^k such that i, j, k > 0 and m+1 and m-1 are both prime numbers.

Original entry on oeis.org

30, 60, 150, 180, 240, 270, 600, 810, 1620, 3000, 4050, 4800, 9000, 9720, 15360, 21600, 23040, 33750, 138240, 180000, 281250, 345600, 737280, 3456000, 6144000, 6561000, 10125000, 13668750, 15552000, 17496000, 20995200, 22118400, 24000000, 30000000, 54675000
Offset: 1

Views

Author

Ken Clements, Jul 16 2025

Keywords

Examples

			a(1) = 2^1 * 3^1 * 5^1 = 30 where 29 and 31 are prime numbers.
a(2) = 2^2 * 3^1 * 5^1 = 60 where 59 and 61 are prime numbers.
a(3) = 2^1 * 3^1 * 5^2 = 150 where 149 and 151 are prime numbers.
a(4) = 2^2 * 3^2 * 5^1 = 180 where 179 and 181 are prime numbers.
		

Crossrefs

Subsequence of A143207.

Programs

  • Mathematica
    seq[max_] := Select[Table[2^i*3^j*5^k, {i, 1, Log2[max]}, {j, 1, Log[3, max/2^i]}, {k, 1, Log[5, max/(2^i*3^j)]}] // Flatten // Sort, And @@ PrimeQ[# + {-1, 1}] &]; seq[10^8] (* Amiram Eldar, Jul 17 2025 *)
  • Python
    from math import log10
    from gmpy2 import is_prime
    l2, l3, l5 = log10(2), log10(3), log10(5)
    upto_digits = 20
    sum_limit = 3 + int((upto_digits - l3 - l5)/l2)
    def TP_pi_3_upto_sum(limit): # Search all partitions up to the given exponent sum.
        unsorted_result = []
        for exponent_sum in range(3, limit+1):
            for i in range(1, exponent_sum -1):
                 for j in range(1, exponent_sum - i):
                    k = exponent_sum - i - j
                    log_N = i*l2 + j*l3 + k*l5
                    if log_N <= upto_digits:
                        N = 2**i * 3**j * 5**k
                        if is_prime(N-1) and is_prime(N+1):
                            unsorted_result.append((N, log_N))
        sorted_result = sorted(unsorted_result, key=lambda x: x[1])
        return sorted_result
    print([n for n, _ in TP_pi_3_upto_sum(sum_limit) ])

A386498 a(n) is the 2-adic valuation of A386252(n).

Original entry on oeis.org

1, 2, 1, 2, 4, 1, 3, 1, 2, 3, 1, 6, 3, 3, 10, 5, 9, 1, 10, 5, 1, 9, 14, 10, 14, 3, 3, 1, 9, 6, 7, 15, 9, 7, 3, 1, 1, 3, 1, 17, 3, 13, 10, 16, 1, 4, 13, 11, 3, 5, 6, 8, 10, 15, 10, 3, 1, 3, 1, 9, 14, 10, 6, 7, 5, 2, 4, 2, 29, 26, 5, 15, 4, 2, 26, 15, 13, 17, 16
Offset: 1

Views

Author

Ken Clements, Jul 23 2025

Keywords

Examples

			a(1) = 1 because A386252(1) = 2^1 * 3^1 * 5^1
a(2) = 2 because A386252(2) = 2^2 * 3^1 * 5^1
a(3) = 1 because A386252(3) = 2^1 * 3^1 * 5^2
a(4) = 2 because A386252(4) = 2^2 * 3^2 * 5^1
		

Crossrefs

Programs

  • Mathematica
    seq[max_] := IntegerExponent[Select[Table[2^i*3^j*5^k, {i, 1, Log2[max]}, {j, 1, Log[3, max/2^i]}, {k, 1, Log[5, max/(2^i*3^j)]}] // Flatten // Sort, And @@ PrimeQ[# + {-1, 1}] &], 2]; seq[10^12] (* Amiram Eldar, Jul 24 2025 *)
  • Python
    from math import log10
    from gmpy2 import is_prime
    l2, l3, l5 = log10(2), log10(3), log10(5)
    upto_digits = 100
    sum_limit = 3 + int((upto_digits - l3 - l5)/l2)
    def TP_pi_3_upto_sum(limit): # Search all partitions up to the given exponent sum.
        unsorted_result = []
        for exponent_sum in range(3, limit+1):
            for i in range(1, exponent_sum -1):
                 for j in range(1, exponent_sum - i):
                    k = exponent_sum - i - j
                    log_N = i*l2 + j*l3 + k*l5
                    if log_N <= upto_digits:
                        N = 2**i * 3**j * 5**k
                        if is_prime(N-1) and is_prime(N+1):
                            unsorted_result.append((i, log_N))
        sorted_result = sorted(unsorted_result, key=lambda x: x[1])
        return sorted_result
    print([i for i, _ in TP_pi_3_upto_sum(sum_limit) ])

Formula

a(n) = A007814(A386252(n)).

A386499 a(n) is the 5-adic valuation of A386252(n).

Original entry on oeis.org

1, 1, 2, 1, 1, 1, 2, 1, 1, 3, 2, 2, 3, 1, 1, 2, 1, 4, 1, 4, 6, 2, 1, 3, 3, 3, 6, 5, 3, 3, 2, 2, 6, 7, 5, 9, 7, 3, 8, 4, 8, 4, 6, 5, 6, 2, 3, 6, 4, 10, 9, 2, 4, 6, 3, 2, 3, 9, 8, 2, 6, 1, 11, 2, 5, 3, 9, 1, 1, 3, 10, 3, 3, 8, 2, 2, 7, 2, 8, 8, 5, 7, 11, 3, 5, 14
Offset: 1

Views

Author

Ken Clements, Jul 23 2025

Keywords

Examples

			a(1) = 1 because A386252(1) = 2^1 * 3^1 * 5^1
a(2) = 1 because A386252(2) = 2^2 * 3^1 * 5^1
a(3) = 2 because A386252(3) = 2^1 * 3^1 * 5^2
a(4) = 1 because A386252(4) = 2^2 * 3^2 * 5^1
		

Crossrefs

Programs

  • Mathematica
    seq[max_] := IntegerExponent[Select[Table[2^i*3^j*5^k, {i, 1, Log2[max]}, {j, 1, Log[3, max/2^i]}, {k, 1, Log[5, max/(2^i*3^j)]}] // Flatten // Sort, And @@ PrimeQ[# + {-1, 1}] &], 5]; seq[10^12] (* Amiram Eldar, Jul 24 2025 *)
  • Python
    from math import log10
    from gmpy2 import is_prime
    l2, l3, l5 = log10(2), log10(3), log10(5)
    upto_digits = 100
    sum_limit = 3 + int((upto_digits - l3 - l5)/l2)
    def TP_pi_3_upto_sum(limit): # Search all partitions up to the given exponent sum.
        unsorted_result = []
        for exponent_sum in range(3, limit+1):
            for i in range(1, exponent_sum -1):
                 for j in range(1, exponent_sum - i):
                    k = exponent_sum - i - j
                    log_N = i*l2 + j*l3 + k*l5
                    if log_N <= upto_digits:
                        N = 2**i * 3**j * 5**k
                        if is_prime(N-1) and is_prime(N+1):
                            unsorted_result.append((k, log_N))
        sorted_result = sorted(unsorted_result, key=lambda x: x[1])
        return sorted_result
    print([k for k, _ in TP_pi_3_upto_sum(sum_limit) ])

Formula

a(n) = A112765(A386252(n)).

A386500 a(n) is the 3-adic valuation of A386252(n).

Original entry on oeis.org

1, 1, 1, 2, 1, 3, 1, 4, 4, 1, 4, 1, 2, 5, 1, 3, 2, 3, 3, 2, 2, 3, 2, 3, 1, 8, 4, 7, 5, 7, 8, 3, 1, 1, 7, 3, 6, 11, 5, 1, 4, 4, 3, 1, 9, 13, 6, 3, 11, 1, 2, 11, 7, 1, 9, 15, 15, 5, 8, 12, 3, 13, 1, 14, 11, 16, 6, 19, 2, 1, 4, 8, 15, 9, 3, 10, 4, 9, 1, 8, 3, 7, 7
Offset: 1

Views

Author

Ken Clements, Jul 23 2025

Keywords

Examples

			a(1) = 1 because A386252(1) = 2^1 * 3^1 * 5^1
a(2) = 1 because A386252(2) = 2^2 * 3^1 * 5^1
a(3) = 1 because A386252(3) = 2^1 * 3^1 * 5^2
a(4) = 2 because A386252(4) = 2^2 * 3^2 * 5^1
		

Crossrefs

Programs

  • Mathematica
    seq[max_] := IntegerExponent[Select[Table[2^i*3^j*5^k, {i, 1, Log2[max]}, {j, 1, Log[3, max/2^i]}, {k, 1, Log[5, max/(2^i*3^j)]}] // Flatten // Sort, And @@ PrimeQ[# + {-1, 1}] &], 3]; seq[10^12] (* Amiram Eldar, Jul 24 2025 *)
  • Python
    from math import log10
    from gmpy2 import is_prime
    l2, l3, l5 = log10(2), log10(3), log10(5)
    upto_digits = 100
    sum_limit = 3 + int((upto_digits - l3 - l5)/l2)
    def TP_pi_3_upto_sum(limit): # Search all partitions up to the given exponent sum.
        unsorted_result = []
        for exponent_sum in range(3, limit+1):
            for i in range(1, exponent_sum -1):
                 for j in range(1, exponent_sum - i):
                    k = exponent_sum - i - j
                    log_N = i*l2 + j*l3 + k*l5
                    if log_N <= upto_digits:
                        N = 2**i * 3**j * 5**k
                        if is_prime(N-1) and is_prime(N+1):
                            unsorted_result.append((j, log_N))
        sorted_result = sorted(unsorted_result, key=lambda x: x[1])
        return sorted_result
    print([j for j, _ in TP_pi_3_upto_sum(sum_limit) ])

Formula

a(n) = A007949(A386252(n)).
Showing 1-5 of 5 results.