cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A056912 Odd squarefree numbers for which the number of prime divisors is odd.

Original entry on oeis.org

3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73, 79, 83, 89, 97, 101, 103, 105, 107, 109, 113, 127, 131, 137, 139, 149, 151, 157, 163, 165, 167, 173, 179, 181, 191, 193, 195, 197, 199, 211, 223, 227, 229, 231, 233, 239, 241, 251, 255
Offset: 1

Views

Author

James Sellers, Jul 07 2000

Keywords

Comments

Liouville function lambda(n) (A008836) is negative.
m is a term iff mu(m)^m < 0 (A080323(a(n))<0), where mu is the Moebius function (A008683). - Reinhard Zumkeller, Feb 14 2003
The asymptotic density of this sequence is 2/Pi^2 (A185197). - Amiram Eldar, Oct 06 2020

Examples

			a(27) = 3*5*7 = 105 is the least nonprime.
		

References

  • H. Gupta, A formula for L(n), J. Indian Math. Soc., 7 (1943), 68-71.

Crossrefs

Programs

  • Mathematica
    Select[Range[3, 300], SquareFreeQ[#] && LiouvilleLambda[#] == -1 &] (* Jean-François Alcover, Jul 30 2013 *)
    Select[Range[1, 255, 2], MoebiusMu[#] == -1 &] (* Amiram Eldar, Oct 06 2020 *)
  • PARI
    isok(n) = (n%2) && issquarefree(n) && (omega(n)%2) \\ Michel Marcus, Jun 15 2013
    
  • PARI
    is(n)=if(n%2, my(f=factor(n)[,2]);n>1 && vecmax(f)<2 && #f%2, 0) \\ Charles R Greathouse IV, Jun 15 2013

A069158 a(n) = Product{d|n} mu(d), product over positive divisors, d, of n, where mu(d) = Moebius function (A008683).

Original entry on oeis.org

1, -1, -1, 0, -1, 1, -1, 0, 0, 1, -1, 0, -1, 1, 1, 0, -1, 0, -1, 0, 1, 1, -1, 0, 0, 1, 0, 0, -1, 1, -1, 0, 1, 1, 1, 0, -1, 1, 1, 0, -1, 1, -1, 0, 0, 1, -1, 0, 0, 0, 1, 0, -1, 0, 1, 0, 1, 1, -1, 0, -1, 1, 0, 0, 1, 1, -1, 0, 1, 1, -1, 0, -1, 1, 0, 0, 1, 1, -1, 0, 0, 1, -1, 0, 1, 1, 1, 0, -1, 0, 1, 0, 1, 1, 1, 0, -1, 0, 0, 0, -1, 1, -1, 0, 1, 1
Offset: 1

Views

Author

Leroy Quet, Apr 08 2002

Keywords

Comments

Absolute value of a(n) = absolute value of mu(n).
Differs from A080323 at n=2, 105, 165, 195, 231, ..., 15015,..., 19635,.. (cf. A046389, A046391, ...) - R. J. Mathar, Dec 15 2008
Not multiplicative: For example a(2)*a(15) <> a(30). - R. J. Mathar, Mar 31 2012
Row products of table A225817. - Reinhard Zumkeller, Jul 30 2013

Examples

			a(6) = mu(1)*mu(2)*mu(3)*mu(6) = 1*(-1)*(-1)*1 = 1.
		

Crossrefs

Programs

  • Haskell
    a069158 = product . a225817_row  -- Reinhard Zumkeller, Jul 30 2013
    
  • Magma
    f := function(n); t1 := &*[MoebiusMu(d) : d in Divisors(n) ]; return t1; end function;
    
  • Maple
    A069158 := proc(n)
        mul(numtheory[mobius](d),d=numtheory[divisors](n)) ;
    end proc: # R. J. Mathar, May 28 2016
  • Mathematica
    a[n_] := Product[MoebiusMu[d], {d, Divisors[n]}]; Array[a, 106] (* Jean-François Alcover, Feb 22 2018 *)
  • PARI
    a(n) = vecprod(apply(moebius, divisors(n))); \\ Amiram Eldar, Feb 10 2025

Formula

a(n) = 0 if mu(n) = 0 (A013929); a(n) = -1 if n = prime; a(n) = 1 if n = squarefree composite (A120944) or 1.
a(n) = A008966(n) - 2*A010051(n). - Amiram Eldar, Feb 10 2025

A080324 Union of even squarefree numbers (A039956) and squarefree numbers for which the number of prime factors is even (A030229).

Original entry on oeis.org

1, 2, 6, 10, 14, 15, 21, 22, 26, 30, 33, 34, 35, 38, 39, 42, 46, 51, 55, 57, 58, 62, 65, 66, 69, 70, 74, 77, 78, 82, 85, 86, 87, 91, 93, 94, 95, 102, 106, 110, 111, 114, 115, 118, 119, 122, 123, 129, 130, 133, 134, 138, 141, 142, 143, 145, 146, 154, 155, 158, 159, 161
Offset: 1

Views

Author

Reinhard Zumkeller, Feb 14 2003

Keywords

Comments

k is a term of this sequence iff mu(k)^k > 0 respectively iff A080323(k) > 0.

Crossrefs

Extensions

Definition corrected by Georg Fischer at the suggestion of Amiram Eldar, Aug 17 2023

A346773 a(n) = Sum_{d|n} möbius(d)^n.

Original entry on oeis.org

1, 2, 0, 2, 0, 4, 0, 2, 0, 4, 0, 4, 0, 4, 0, 2, 0, 4, 0, 4, 0, 4, 0, 4, 0, 4, 0, 4, 0, 8, 0, 2, 0, 4, 0, 4, 0, 4, 0, 4, 0, 8, 0, 4, 0, 4, 0, 4, 0, 4, 0, 4, 0, 4, 0, 4, 0, 4, 0, 8, 0, 4, 0, 2, 0, 8, 0, 4, 0, 8, 0, 4, 0, 4, 0, 4, 0, 8, 0, 4, 0, 4, 0, 8, 0, 4, 0, 4, 0, 8, 0, 4, 0, 4, 0, 4, 0, 4, 0, 4, 0, 8, 0
Offset: 1

Views

Author

Seiichi Manyama, Aug 03 2021

Keywords

Crossrefs

Programs

  • Mathematica
    Table[Sum[MoebiusMu[d]^n,{d,Divisors[n]}],{n,103}] (* Stefano Spezia, Aug 03 2021 *)
  • PARI
    a(n) = sumdiv(n, d, moebius(d)^n);
    
  • PARI
    a(n) = if(n%2, 0^(n-1), 2^omega(2*n));
    
  • PARI
    N=99; x='x+O('x^N); Vec(sum(k=1, N, (moebius(k)*x)^k/(1-(moebius(k)*x)^k)))

Formula

G.f.: Sum_{k>=1} (mu(k)*x)^k/(1 - (mu(k)*x)^k).
a(2*n-1) = 0^(n-1) and a(2*n) = A034444(2*n) = A100008(n) for n > 0.
Showing 1-4 of 4 results.