1, 3, 60, 12600, 38102400, 2112397056000, 2609908810629120000, 84645606509847871488000000, 82967862872337478796810649600000000, 2781259372192376861719959017613164544000000000
Offset: 1
A203521
a(n) = Product_{1 <= i < j <= n} (prime(i) + prime(j)).
Original entry on oeis.org
1, 1, 5, 280, 302400, 15850598400, 32867800842240000, 5539460271229108224000000, 55190934927547677562078494720000000, 61965661927377302817151474643396198400000000000, 14512955968670787590604912803260278557019929051136000000000000
Offset: 0
a(1) = 1.
a(2) = 2 + 3 = 5.
a(3) = (2+3)(2+5)(3+5) = 280.
-
a:= n-> mul(mul(ithprime(i)+ithprime(j), i=1..j-1), j=2..n):
seq(a(n), n=0..10); # Alois P. Heinz, Jul 23 2017
-
f[j_] := Prime[j]; z = 15;
v[n_] := Product[Product[f[k] + f[j], {j, 1, k - 1}], {k, 2, n}]
d[n_] := Product[(i - 1)!, {i, 1, n}] (* A000178 *)
Table[v[n], {n, 1, z}] (* A203521 *)
Table[v[n + 1]/v[n], {n, 1, z - 1}] (* A203522 *)
Table[v[n]/d[n], {n, 1, 20}] (* A203523 *)
A290179
Permanent of the Vandermonde matrix of the first n prime numbers.
Original entry on oeis.org
1, 1, 5, 220, 143842, 3812606760, 3100526225748168, 166067393340668215090464, 385094129557861603998569599769808, 77982538436250653791038197809234977272470080, 2745781888570437969210153614136500296784874421242232818048
Offset: 0
a(3) = Permanent([1, 2, 4; 1, 3, 9; 1, 5, 25]) = 220.
-
with(LinearAlgebra):
a:= n-> `if`(n=0, 1, Permanent(VandermondeMatrix([ithprime(i)$i=1..n]))):
seq(a(n), n=0..12);
A298883
Determinant of n X n matrix whose elements are m(i,j) = prime(i)^j.
Original entry on oeis.org
1, 2, 6, 180, 50400, 958003200, 131514679296000, 1352181326649753600000, 112703642894318944282214400000, 903025586371469323704949549301760000000, 2012769637740033870687308804001121075357286400000000
Offset: 0
For n=1:
|2| = 2, then a(1) = 2.
For n=2:
|2 4| = 6, then a(2) = 6.
|3 9|
For n=3:
|2 4 8| = 180, then a(3) = 180.
|3 9 27|
|5 25 125|
-
with(LinearAlgebra):
a:= n-> Determinant(Matrix(n, (i,j)-> ithprime(i)^j)):
seq(a(n), n=0..12); # Alois P. Heinz, Jan 28 2018
# Alternative:
f:= proc(n) local P;
P:= [seq(ithprime(i),i=1..n)];
convert(P,`*`)*mul(mul(P[j]-P[i],j=i+1..n),i=1..n-1)
end proc:
map(f, [$0..20]); # Robert Israel, Jan 29 2018
-
a[n_]:=Table[Prime[i]^j,{i,1,n},{j,1,n}];
Table[Det[a[n]],{n,1,10}]
-
a(n) = matdet(matrix(n, n, i, j, prime(i)^j)); \\ Michel Marcus, Jan 28 2018
Comments
Examples
References
Links
Crossrefs
Programs
Maple
Mathematica
PARI
Formula
Extensions