cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A203314 a(n) = A080358(n)/A000178(n) where A000178 are superfactorials.

Original entry on oeis.org

1, 1, 3, 20, 1440, 126720, 106444800, 92649553920, 800492145868800, 169546981039511961600, 22908645527719529813114880, 98973345879641681792154678067200, 1436275858228814897897209896513621196800
Offset: 1

Views

Author

Clark Kimberling, Jan 01 2012

Keywords

Crossrefs

Programs

  • Mathematica
    f[j_] := Prime[j]; z = 15;
    v[n_] := Product[Product[f[k] - f[j], {j, 1, k - 1}], {k, 2, n}]
    d[n_] := Product[(i - 1)!, {i, 1, n}]
    Table[v[n], {n, 1, z}]              (* A080358 *)
    Table[v[n + 1]/v[n], {n, 1, z - 1}] (* A086803 *)
    Table[v[n]/d[n], {n, 1, 20}]        (* A203314 *)

Extensions

Name edited by Michel Marcus, May 17 2019

A093883 Product of all possible sums of two distinct numbers taken from among first n natural numbers.

Original entry on oeis.org

1, 3, 60, 12600, 38102400, 2112397056000, 2609908810629120000, 84645606509847871488000000, 82967862872337478796810649600000000, 2781259372192376861719959017613164544000000000
Offset: 1

Views

Author

Amarnath Murthy, Apr 22 2004

Keywords

Comments

From Clark Kimberling, Jan 02 2013: (Start)
Each term divides its successor, as in A006963, and by the corresponding superfactorial, A000178(n), as in A203469.
Abbreviate "Vandermonde" as V. The V permanent of a set S={s(1),s(2),...,s(n)} is a product of sums s(j)+s(k) in analogy to the V determinant as a product of differences s(k)-s(j). Let D(n) and P(n) denote the V determinant and V permanent of S, and E(n) the V determinant of the numbers s(1)^2, s(2)^2, ..., s(n)^2; then P(n) = E(n)/D(n). This is one of many divisibility properties associated with V determinants and permanents. Another is that if S consists of distinct positive integers, then D(n) divides D(n+1) and P(n) divides P(n+1).
Guide to related sequences:
...
s(n).............. D(n)....... P(n)
n................. A000178.... (this)
n+1............... A000178.... A203470
n+2............... A000178.... A203472
n^2............... A202768.... A203475
2^(n-1)........... A203303.... A203477
2^n-1............. A203305.... A203479
n!................ A203306.... A203482
n(n+1)/2.......... A203309.... A203511
Fibonacci(n+1).... A203311.... A203518
prime(n).......... A080358.... A203521
odd prime(n)...... A203315.... A203524
nonprime(n)....... A203415.... A203527
composite(n)...... A203418.... A203530
2n-1.............. A108400.... A203516
n+floor(n/2)...... A203430
n+floor[(n+1)/2].. A203433
1/n............... A203421
1/(n+1)........... A203422
1/(2n)............ A203424
1/(2n+2).......... A203426
1/(3n)............ A203428
Generalizing, suppose that f(x,y) is a function of two variables and S=(s(1),s(2),...s(n)). The phrase, "Vandermonde sequence using f(x,y) applied to S" means the sequence a(n) whose n-th term is the product f(s(j,k)) : 1<=j
...
If f(x,y) is a (bivariate) cyclotomic polynomial and S is a strictly increasing sequence of positive integers, then a(n) consists of integers, each of which divides its successor. Guide to sequences for which f(x,y) is x^2+xy+y^2 or x^2-xy+y^2 or x^2+y^2:
...
s(n) ............ x^2+xy+y^2.. x^2-xy+y^2.. x^2+y^2
n ............... A203012..... A203312..... A203475
n+1 ............. A203581..... A203583..... A203585
2n-1 ............ A203514..... A203587..... A203589
n^2 ............. A203673..... A203675..... A203677
2^(n-1) ......... A203679..... A203681..... A203683
n! .............. A203685..... A203687..... A203689
n(n+1)/2 ........ A203691..... A203693..... A203695
Fibonacci(n) .... A203742..... A203744..... A203746
Fibonacci(n+1) .. A203697..... A203699..... A203701
prime(n) ........ A203703..... A203705..... A203707
floor(n/2) ...... A203748..... A203752..... A203773
floor((n+1)/2) .. A203759..... A203763..... A203766
For f(x,y)=x^4+y^4, see A203755 and A203770. (End)

Examples

			a(4) = (1+2)*(1+3)*(1+4)*(2+3)*(2+4)*(3+4) = 12600.
		

References

  • Amarnath Murthy, Another combinatorial approach towards generalizing the AM-GM inequality, Octagon Mathematical Magazine, Vol. 8, No. 2, October 2000.
  • Amarnath Murthy, Smarandache Dual Symmetric Functions And Corresponding Numbers Of The Type Of Stirling Numbers Of The First Kind. Smarandache Notions Journal, Vol. 11, No. 1-2-3 Spring 2000.

Crossrefs

Programs

  • Maple
    a:= n-> mul(mul(i+j, i=1..j-1), j=2..n):
    seq(a(n), n=1..12);  # Alois P. Heinz, Jul 23 2017
  • Mathematica
    f[n_] := Product[(j + k), {k, 2, n}, {j, 1, k - 1}]; Array[f, 10] (* Robert G. Wilson v, Jan 08 2013 *)
  • PARI
    A093883(n)=prod(i=1,n,(2*i-1)!/i!)  \\ M. F. Hasler, Nov 02 2012

Formula

Partial products of A006963: a(n) = Product((2*i-1)!/i!, i=1..n). - Vladeta Jovovic, May 27 2004
G.f.: G(0)/(2*x) -1/x, where G(k)= 1 + 1/(1 - 1/(1 + 1/((2*k+1)!/(k+1)!)/x/G(k+1))); (continued fraction). - Sergei N. Gladkovskii, Jun 15 2013
a(n) ~ sqrt(A/Pi) * 2^(n^2 + n/2 - 7/24) * exp(-3*n^2/4 + n/2 - 1/24) * n^(n^2/2 - n/2 - 11/24), where A is the Glaisher-Kinkelin constant A074962. - Vaclav Kotesovec, Jan 26 2019

Extensions

More terms from Vladeta Jovovic, May 27 2004

A203521 a(n) = Product_{1 <= i < j <= n} (prime(i) + prime(j)).

Original entry on oeis.org

1, 1, 5, 280, 302400, 15850598400, 32867800842240000, 5539460271229108224000000, 55190934927547677562078494720000000, 61965661927377302817151474643396198400000000000, 14512955968670787590604912803260278557019929051136000000000000
Offset: 0

Author

Clark Kimberling, Jan 03 2012

Keywords

Comments

Each term divides its successor, as in A203511. It is conjectured that each term is divisible by the corresponding superfactorial, A000178(n). See A093883 for a guide to related sequences.

Examples

			a(1) = 1.
a(2) = 2 + 3 = 5.
a(3) = (2+3)(2+5)(3+5) = 280.
		

Crossrefs

Programs

  • Maple
    a:= n-> mul(mul(ithprime(i)+ithprime(j), i=1..j-1), j=2..n):
    seq(a(n), n=0..10);  # Alois P. Heinz, Jul 23 2017
  • Mathematica
    f[j_] := Prime[j]; z = 15;
    v[n_] := Product[Product[f[k] + f[j], {j, 1, k - 1}], {k, 2, n}]
    d[n_] := Product[(i - 1)!, {i, 1, n}] (* A000178 *)
    Table[v[n], {n, 1, z}]                (* A203521 *)
    Table[v[n + 1]/v[n], {n, 1, z - 1}]   (* A203522 *)
    Table[v[n]/d[n], {n, 1, 20}]          (* A203523 *)

Extensions

Name edited by Alois P. Heinz, Jul 23 2017

A290179 Permanent of the Vandermonde matrix of the first n prime numbers.

Original entry on oeis.org

1, 1, 5, 220, 143842, 3812606760, 3100526225748168, 166067393340668215090464, 385094129557861603998569599769808, 77982538436250653791038197809234977272470080, 2745781888570437969210153614136500296784874421242232818048
Offset: 0

Author

Alois P. Heinz, Jul 23 2017

Keywords

Examples

			a(3) = Permanent([1, 2, 4; 1, 3, 9; 1, 5, 25]) = 220.
		

Crossrefs

Programs

  • Maple
    with(LinearAlgebra):
    a:= n-> `if`(n=0, 1, Permanent(VandermondeMatrix([ithprime(i)$i=1..n]))):
    seq(a(n), n=0..12);

A298883 Determinant of n X n matrix whose elements are m(i,j) = prime(i)^j.

Original entry on oeis.org

1, 2, 6, 180, 50400, 958003200, 131514679296000, 1352181326649753600000, 112703642894318944282214400000, 903025586371469323704949549301760000000, 2012769637740033870687308804001121075357286400000000
Offset: 0

Author

Andres Cicuttin, Jan 28 2018

Keywords

Comments

Traces of these matrices are A087480.

Examples

			For n=1:
          |2| = 2, then a(1) = 2.
For n=2:
          |2  4| = 6, then a(2) = 6.
          |3  9|
For n=3:
          |2  4   8| = 180, then a(3) = 180.
          |3  9  27|
          |5 25 125|
		

Crossrefs

Programs

  • Maple
    with(LinearAlgebra):
    a:= n-> Determinant(Matrix(n, (i,j)-> ithprime(i)^j)):
    seq(a(n), n=0..12);  # Alois P. Heinz, Jan 28 2018
    # Alternative:
    f:= proc(n) local P;
    P:= [seq(ithprime(i),i=1..n)];
    convert(P,`*`)*mul(mul(P[j]-P[i],j=i+1..n),i=1..n-1)
    end proc:
    map(f, [$0..20]); # Robert Israel, Jan 29 2018
  • Mathematica
    a[n_]:=Table[Prime[i]^j,{i,1,n},{j,1,n}];
    Table[Det[a[n]],{n,1,10}]
  • PARI
    a(n) = matdet(matrix(n, n, i, j, prime(i)^j)); \\ Michel Marcus, Jan 28 2018

Formula

a(n) = Product_{1<=i<=n} prime(i) * Product_{1<=iRobert Israel, Jan 29 2018
Showing 1-5 of 5 results.