A080578 a(1)=1; for n > 1, a(n) = a(n-1) + 1 if n is already in the sequence, a(n) = a(n-1) + 3 otherwise.
1, 4, 7, 8, 11, 14, 15, 16, 19, 22, 23, 26, 29, 30, 31, 32, 35, 38, 39, 42, 45, 46, 47, 50, 53, 54, 57, 60, 61, 62, 63, 64, 67, 70, 71, 74, 77, 78, 79, 82, 85, 86, 89, 92, 93, 94, 95, 98, 101, 102, 105, 108, 109, 110, 113, 116, 117, 120, 123, 124, 125, 126
Offset: 1
Keywords
Links
- Reinhard Zumkeller, Table of n, a(n) for n = 1..10000
- Benoit Cloitre, N. J. A. Sloane and M. J. Vandermast, Numerical analogues of Aronson's sequence, J. Integer Seqs., Vol. 6 (2003), #03.2.2.
- Benoit Cloitre, N. J. A. Sloane and M. J. Vandermast, Numerical analogues of Aronson's sequence, arXiv:math/0305308 [math.NT], 2003.
- Robbert Fokkink and Gandhar Joshi, On Cloitre's hiccup sequences, arXiv:2507.16956 [math.CO], 2025. See pp. 3, 5, 11.
Programs
-
Haskell
a080578 n = a080578_list !! (n-1) a080578_list = 1 : f 2 [1] where f x zs@(z:_) = y : f (x + 1) (y : zs) where y = if x `elem` zs then z + 1 else z + 3 -- Reinhard Zumkeller, Sep 26 2014
-
Mathematica
l={1}; a=1; For[n=2, n<=100, If[MemberQ[l, n], a=a+1, a=a+3]; AppendTo[l, a]; n++]; l (* Indranil Ghosh, Apr 07 2017 *)
-
PARI
a(n)=if(n<2,1,a(n+1-2^floor(log(n)/log(2)))+2*2^floor(log(n)/log(2))-1) \\ Benoit Cloitre, Feb 04 2007
-
Python
l=[1] a=1 for n in range(2, 101): a += 3 if n not in l else 1 l.append(a) print(l) # Indranil Ghosh, Apr 07 2017
Formula
a(n) = 2n + O(1); a(2^n) = 2^(n+1). - Benoit Cloitre, Oct 12 2003
a(1) = 1, for n >= 2 a(n) = a(n + 1 - 2^floor(log(n)/log(2))) + 2*2^floor(log(n)/log(2)) - 1; (a(n) - n)/2 = A046699(n) for n >= 2. - Benoit Cloitre, Feb 04 2007
a(n) = A055938(n-1) + 2 (conjectured). - Ralf Stephan, Dec 27 2013
Comments