A080599 Expansion of e.g.f.: 2/(2-2*x-x^2).
1, 1, 3, 12, 66, 450, 3690, 35280, 385560, 4740120, 64751400, 972972000, 15949256400, 283232149200, 5416632421200, 110988861984000, 2425817682288000, 56333385828720000, 1385151050307024000, 35950878932544576000, 982196278209226080000, 28175806418228108640000
Offset: 0
Examples
From _Gus Wiseman_, Jul 04 2020: (Start) The a(0) = 1 through a(3) = 12 ordered set partitions with block sizes <= 2 are: {} {{1}} {{1,2}} {{1},{2,3}} {{1},{2}} {{1,2},{3}} {{2},{1}} {{1,3},{2}} {{2},{1,3}} {{2,3},{1}} {{3},{1,2}} {{1},{2},{3}} {{1},{3},{2}} {{2},{1},{3}} {{2},{3},{1}} {{3},{1},{2}} {{3},{2},{1}} (End)
Links
- Alois P. Heinz, Table of n, a(n) for n = 0..200
- S. Alex Bradt, Jennifer Elder, Pamela E. Harris, Gordon Rojas Kirby, Eva Reutercrona, Yuxuan (Susan) Wang, and Juliet Whidden, Unit interval parking functions and the r-Fubini numbers, arXiv:2401.06937 [math.CO], 2024. See page 10.
- Jennifer Elder, Pamela E. Harris, Jan Kretschmann, and J. Carlos MartÃnez Mori, Boolean intervals in the weak order of S_n, arXiv:2306.14734 [math.CO], 2023.
- Laura Gellert and Raman Sanyal, On degree sequences of undirected, directed, and bidirected graphs, arXiv preprint arXiv:1512.08448 [math.CO], 2015.
- Hannah Golab, Pattern avoidance in Cayley permutations, Master's Thesis, Northern Arizona Univ. (2024). See p. 36.
- Harri Hakula, Helmut Harbrecht, Vesa Kaarnioja, Frances Y. Kuo, and Ian H. Sloan, Uncertainty quantification for random domains using periodic random variables, arXiv:2210.17329 [math.NA], 2022.
- Dixy Msapato, Counting the number of tau-exceptional sequences over Nakayama algebras, arXiv:2002.12194 [math.RT], 2020.
- Robert A. Proctor, Let's Expand Rota's Twelvefold Way For Counting Partitions!, arXiv:math/0606404 [math.CO], 2006-2007.
- Gus Wiseman, Sequences counting and ranking compositions by the patterns they match or avoid.
- Index entries for related partition-counting sequences
Crossrefs
Column k=2 of A276921.
Cubefree numbers are A004709.
(1,1)-avoiding patterns are A000142.
(1,1,1)-avoiding compositions are A232432.
(1,1,1)-matching patterns are A335508.
(1,1,1)-avoiding permutations of prime indices are A335511.
(1,1,1)-avoiding compositions are ranked by A335513.
(1,1,1,1)-avoiding patterns are A189886.
Programs
-
Magma
[n le 2 select 1 else (n-1)*Self(n-1) + Binomial(n-1,2)*Self(n-2): n in [1..31]]; // G. C. Greubel, Jan 31 2023
-
Maple
a:= n-> n! *(Matrix([[1,1], [1/2,0]])^n)[1,1]: seq(a(n), n=0..40); # Alois P. Heinz, Jun 01 2009 a:= gfun:-rectoproc({a(n) = n*a(n-1)+(n*(n-1)/2)*a(n-2),a(0)=1,a(1)=1},a(n),remember): seq(a(n), n=0..40); # Robert Israel, Nov 01 2015
-
Mathematica
Table[n!*SeriesCoefficient[-2/(-2+2*x+x^2),{x,0,n}],{n,0,20}] (* Vaclav Kotesovec, Oct 13 2012 *) Round@Table[n! ((1+Sqrt[3])^(n+1) - (1-Sqrt[3])^(n+1))/(2^(n+1) Sqrt[3]), {n, 0, 20}] (* Vladimir Reshetnikov, Oct 31 2015 *)
-
PARI
Vec(serlaplace((2/(2-2*x-x^2) + O(x^30)))) \\ Michel Marcus, Nov 02 2015
-
SageMath
A002605=BinaryRecurrenceSequence(2,2,0,1) def A080599(n): return factorial(n)*A002605(n+1)/2^n [A080599(n) for n in range(41)] # G. C. Greubel, Jan 31 2023
Formula
a(n) = n*a(n-1) + (n*(n-1)/2)*a(n-2). - Vladeta Jovovic, Aug 22 2003
E.g.f.: 1/(1-x-x^2/2). - Richard Stanley, May 09 2011
a(n) ~ n!*((1+sqrt(3))/2)^(n+1)/sqrt(3). - Vaclav Kotesovec, Oct 13 2012
a(n) = n!*((1+sqrt(3))^(n+1) - (1-sqrt(3))^(n+1))/(2^(n+1)*sqrt(3)). - Vladimir Reshetnikov, Oct 31 2015
Comments